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Abstract

Aspects of a constitutive model for characterizing crystalline metals containing a distribu-

tion of dislocation and disclination defects are presented. Kinematics, balance laws, and

general kinetic relations are developed – from the perspective of multiscale volume averaging

– upon examination of a deforming crystalline element containing a distribution of displace-

ment discontinuities in the form of translational and rotational lattice defects, i.e., dislocations

and disclinations. The macroscopic kinematic description is characterized by a three-term mul-

tiplicative decomposition of the deformation gradient. The micro-level description follows

from an additive decomposition of an affine connection into contributions from populations

of dislocations and disclinations to the distortion of the lattice directors. Standard balance

equations apply at the macroscopic scale, while momentum balances reminiscent of those

encountered in micropolar elasticity (i.e., couple stress theory) are imposed at the micro-level

on first and second order moment stresses associated with geometrically necessary defects.

Thermodynamic restrictions are presented, and general features of kinetic relations are postu-

lated for time rates of inelastic deformations and internal variables. Micropolar rotations are

incorporated to capture physics that geometrically necessary dislocations stemming from first
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order gradients of elastic or plastic parts of the total deformation gradient may alone be

unable to reflect, including evolution of defect substructure at multiple length scales and

incompatible lattice misorientation gradients arising in ductile single crystals subjected to

nominally homogeneous deformation.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Processes of grain subdivision and dislocation substructure formation are known

to substantially affect slip system activity, strain hardening, stored lattice energy, and

texture evolution in single crystals and polycrystals (Hughes et al., 1997, 2003; Kuhl-
mann-Wilsdorf, 1999; Butler et al., 2000; Barton and Dawson, 2001; Hughes, 2001;

Leffers, 2001). Also measured within pure ductile metals and certain alloys at large

deformations and/or high temperatures are long range internal stress fields associ-

ated with misoriented subgrain boundaries (Gibeling and Nix, 1980; Argon and

Takeuchi, 1981); moreover, recent experiments on cyclic dislocation cell structures

(Kassner et al., 2002) suggest such internal stress fields may be of negligible magni-

tude in the macroscopically unloaded configuration in FCC crystals. The trend in

many metallic systems of increasing strength with decreasing size of considered vol-
ume or microstructural features is also well known. Perhaps most often cited in this

context is the Hall–Petch relation, in which yield stress and cleavage strength in-

crease with decreasing grain size in polycrystals (Hall, 1951; Petch, 1953). Since poly-

crystalline grain boundaries and deformation-induced internal boundaries share

certain fundamental characteristics such as lattice incompatibility (i.e., misorienta-

tion across interfaces) and nominally large defect densities relative to the bulk mate-

rial, one would expect some degree of similarity in the effects engendered by these

boundaries upon homogenized mechanical properties of the material such as macro-
scopic strength and hardness.

Composite models wherein walled cellular dislocation structures, represented by

hard and soft regions of relatively high and low defect densities, respectively, have

been suggested to explain the effects of evolving populations of these substructures

on flow stress (Mughrabi, 1983, 1988, 2001; Berveiller et al., 1993; Zaiser, 1998).

Meyers and co-workers (Meyers and Ashworth, 1982; Benson et al., 2001; Fu

et al., 2001) invoked composite models featuring grain boundary layers of relatively

high dislocation density to explain grain size influences on yielding. Formulations
have also been proposed that explicitly embed subdivision and related dislocation

substructure effects into the kinematics of crystal plasticity theory (Leffers, 1994;

Butler and McDowell, 1998) and the hardening and intergranular interaction laws

of polycrystalline models (Horstemeyer and McDowell, 1998; Horstemeyer et al.,

1999). Composite micromechanics models have also been applied to describe the

breakdown of the Hall–Petch effect in nanocrystalline solids (Capolungo et al.,

2005).
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A great many continuum treatments of elasticity or elastoplasticity include

enhancements intended to describe influences of microstructure on the mechanical

response of the material, perhaps beginning with the pioneering director theory of

Cosserat and Cosserat (1909). Multi-polar and higher gradient elasticity theories fea-

turing higher order stresses (e.g., couple stresses) were developed by Truesdell and
Toupin (1960), Toupin (1962, 1964), Green and Rivlin (1964), Teodosiu (1967),

and Eringen (1972), among others. Kröner (1963) explained the origin of couple

stresses from a volume averaging perspective, with the Cauchy stress for a represen-

tative volume containing uniformly distributed lattice defects defined as the average

of the microscopic stress, and the couple stresses produced by fluctuations in the

microscopic stress fields induced by the defects. Early strain gradient plasticity the-

ories were postulated by Fox (1968), Teodosiu (1969), Lardner (1969), Dillon and

Kratochvı́l (1970), and Dillon and Perzyna (1972). Holt (1970) and Bammann and
Aifantis (1982) developed gradient-based models of dislocation kinetics. Kröner

(1973) and Hartley (1975) considered the effects of higher order moments of disloca-

tion distributions. By statistical averaging of elastic stress fields imparted by distri-

butions of discrete dislocation dipoles, Groma et al. (2003) derived continuum

expressions for resistance to plastic deformation, with flow stresses (due to shorter-

range dislocation force interactions) depending upon the average dislocation density

and back stresses (due to longer-range interactions) depending upon the first spatial

gradient of the dislocation density. In recent years, higher order plasticity theories
have exhibited a resurgence in popularity, as evidenced by an abundance of models

featured in the literature (cf. Aifantis, 1987; Fleck and Hutchinson, 1993; Nagdhi

and Srinivasa, 1993; Fleck et al., 1994; Le and Stumpf, 1996a; Shizawa and Zbib,

1999; Acharya and Bassani, 2000; Acharya, 2003; Bammann, 2001; Regueiro

et al., 2002; Gurtin, 2002; Svendsen, 2002; Garikipati, 2003; Clayton et al., 2004a).

The fundamental kinematic descriptions invoked by many of these theories are based

upon differential-geometric foundations often credited to Bilby et al. (1955), Günther

(1958), Kröner (1960), Kondo (1964), Truesdell and Noll (1965), and Noll (1967),
while the concept of compatibility-maintaining geometrically necessary dislocations

was established by Nye�s tensorial description (1953) and then popularized by Ash-

by�s (1970) seminal paper. Higher order plasticity theories have been used to explain

grain size effects upon hardness or flow stress (Shu and Fleck, 1999; Evers et al.,

2002), to predict geometrical characteristics of deformation bands (Aifantis, 1987;

Gurtin, 2000), to provide insight into dislocation nucleation criteria (Acharya,

2003), and to alleviate mesh dependency issues in numerical implementations

(cf. Menzel and Steinmann, 2000).
It should be noted that in the majority of the above gradient-type theories, geo-

metrically necessary dislocations representing defect substructure will not evolve in

single crystals subjected to nominally homogeneous boundary and initial conditions;

in these theories, stress and elastic deformation gradient fields will remain spatially

constant within regions of a single crystal subjected to such boundary conditions un-

less the constitutive formulation favors development of deformation heterogeneity,

for example from the standpoint of material instability. By homogeneous boundary

conditions we mean linear displacement or constant traction applied to the external
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surface of the single crystal, along with any higher order boundary conditions – often

necessitated by the presence of strain gradients in the formulation, for example – that

would result in null lattice curvature on the boundary. Correspondingly, homoge-

neous initial conditions imply no initial lattice curvature or gradients in initial hard-

ness within the crystal. Kratochvı́l and Orlová (1990) and Sedláček et al. (2001)
addressed self-organization of dislocation substructure using nonlinear stability

analyses. Ortiz and co-workers (Ortiz and Repetto, 1999; Ortiz et al., 2000) con-

structed a nonlocal lamination theory for modeling additional internal degrees of

freedom associated with dislocation substructure, with kinetics dictated by minimi-

zation of the incremental work of deformation arising from a non-convex strain en-

ergy potential that admits multiple quasi-stable states. Similarly, Carstensen et al.

(2002) remarked how heterogeneous plastic flow may result from a lack of convexity

of the free energy when evolution of deformation is viewed from the standpoint of a
constrained energy minimization problem. Possible sources of instability or non-

convexity of the strain energy density of single crystals, from the perspective of con-

tinuum plasticity theory, include geometrical softening and strong latent hardening

(Ortiz and Repetto, 1999; Sedláček et al., 2001; Carstensen et al., 2002). Such lack of

convexity is thought to promote subdivision of crystals into subdomains character-

ized by single slip and varying gradients of deformation, analogous to the minimum

energy configurations postulated for microstructural refinement in the crystallo-

graphic theory of martensite (Ball and James, 1987; Bhattacharya, 1991).
In the present work we appeal to the mathematical concept of a disclination to de-

scribe rotational defects in crystals. In a general sense, such defects may include low

angle, high angle, and twin boundaries. In essence, disclinations embody equivalent

arrays of dislocations with net Burgers vectors that can also be used to represent

these boundaries. Limiting these boundaries to finite strain energy necessitates that

they be composed of disclinations of finite size, i.e., partial disclinations bounded by

walls of disclination dipoles, termed disclination structural units by Nazarov et al.

(2000). The principal reason we seek to extend finite elastoplasticity to incorporate
disclinations is that such defects convey important implications with regard to size

effects and self-organization of dislocation substructure which are becoming increas-

ingly evident in experimental characterization at finer length scales (Pantleon, 1996;

Hughes et al., 1998; Kassner and Pérez-Prado, 2000; Valiev et al., 2002). By includ-

ing both dislocations and disclinations in our framework, we are able to distinguish

between geometrically necessary defect densities reflecting lattice incompatibilities at

multiple length scales (i.e., multiple characteristic spacings). For example, Hughes

and co-workers (Hughes et al., 1997, 1998; Hughes and Hansen, 2000; Hughes,
2001) have observed within deforming ductile FCC metals the formation of cells

of relatively small misorientation organized collectively into larger cell blocks, with

average misorientations between blocks usually significantly greater in magnitude

than those between cells. Upon increasing applied strain, cell block sizes generally

decrease at faster rate than do cell sizes (Hughes et al., 1997). In the context of

our theory, the disclination concept can be used to capture the gradients of lattice

rotation at the cell block boundaries that arise from the organization and super-

position of relatively small misorientations between the cells, reflected here by
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geometrically necessary dislocations. Additionally, when the kinetics of evolution of

statistically stored defects, geometrically necessary dislocations, and geometrically

necessary disclinations are properly coupled, cells and cell blocks will emerge in sin-

gle crystals upon homogeneous loading, as observed in the aforementioned experi-

ments, and the subdivided crystal will attain an energetically favorable
configuration (i.e., a local minimum in free energy over its entire volume). We sug-

gest that a lack of local convexity – or, more precisely, lack of ‘‘cross-quasiconvex-

ivity’’ in the terminology of Carstensen et al. (2002) – stems from the superposition

of free energy wells associated with different mechanisms, in our case associated with

generation and interaction of defect densities of various origins (e.g., populations of

geometrically necessary and statistically stored dislocations and disclinations). This

concept is demonstrated explicitly in Appendix A of the present paper.

Some brief descriptive remarks regarding disclination defects are now in order. In
the early twentieth century, Volterra (1907) introduced six fundamental types of de-

fects in elastic bodies: three types of translational displacement discontinuities,

known as edge and screw dislocations, and three types of rotational incompatibili-

ties, later termed disclinations by Frank (1958) and further classified as either wedge

or twist disclinations (see Fig. 1). Disclination theory has been applied to numerous

problems of interest. These include descriptions of micropolar rotations in liquid

crystals (cf. Frank, 1958; Cermelli and Fried, 2002), rotational defect substructures

and commensurate strain hardening in metal forming processes (Romanov, 1993;
Seefeldt and Klimanek, 1997, 1998; Valiev et al., 2002), grain boundary structure

in Bravais crystals (Li, 1972; Gertsman et al., 1989; Nazarov and Romanov, 1989;

Rybin et al., 1993), deformation twins (Müllner and Romanov, 1994), and polycrys-

talline triple junctions (Bollmann, 1991). Disclinations have also been recognized as

characteristic defects in polymers (Li and Gilman, 1970) and nanocrystals (Nazarov
Fig. 1. Volterra�s defects: (a) reference cylinder with defect line n0 and cut surface S; (b,c) edge dislocations

and (d) screw dislocation with Burgers vector b; (e,f) twist disclinations and (g) wedge disclination with

Frank vector x.
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et al., 1993; Konstantinidis and Aifantis, 1998). Molecular dynamics simulations

incorporating disclination concepts (Shenderova and Brenner, 1999; Nazarov

et al., 2000) have been undertaken to characterize grain boundary energy distribu-

tions over a range of intergranular misorientations.

Continuum theories of distributed dislocations and disclinations can be found in
the geometrically oriented papers of Anthony (1969), Eringen and Claus (1970),

Lardner (1973), Kossecka and de Wit (1977), Minagawa (1977, 1979, 1981), Amari

(1981), and De Wit (1981). The texts of Nabarro (1967), Lardner (1974), Mura

(1982), Maugin (1993), and Zubov (1997) also include precise mathematical descrip-

tions and/or elastic solutions. De Wit (1973) developed a theory of distributed discli-

nation loops. Pe�cherski (1983, 1985) employed disclination concepts in continuum

formulations describing finite elastoplastic kinematics, strain hardening, dislocation

substructure development, and geometrical softening, the latter resulting from local
lattice rotations and acting as a potential precursor to shear localization. An exten-

sive review of disclination theory focusing upon defect kinetics and contributions to

plastic strain hardening was provided by Seefeldt (2001), who suggested that partial

disclination dipoles be used to describe the collective effects of dislocations compris-

ing misoriented subgranular interfaces (i.e., cell block boundaries), manifesting dis-

location substructure refinement in advanced stages of plastic deformation. Seefeldt

et al. (2001a,b) used dislocation–disclination models to predict texture diffusion and

cellular refinement commensurate with grain subdivision. Panin (1998) and Makarov
et al. (1999) emphasized the role of disclination structures accompanying finite

inelastic rotations at the mesoscale, often occurring in conjunction with shear local-

ization triggered by microscopic heterogeneity. Lazar and Maugin (2004) recently

described the stress field of a wedge disclination via higher gradient elasticity theory.

Classification of disclinations as fundamental defects in Bravais crystals has been

an occasional subject of debate in the literature (Kröner, 1983; Marcinkowski, 1990;

Kröner and Lagoudas, 1992). This argument arises because one generally must con-

sider a larger length scale of observation (e.g., the vector r from the axis of rotation
to the point of discontinuity) to define the net displacement jump associated with a

single disclination in a Bravais crystal (Kondo, 1964; Romanov, 1993) than is re-

quired for an isolated dislocation, whose effects manifest at a scale on the order of

the lattice parameter. In fact, one may generally construct an equivalent lattice con-

figuration by replacing disclinations with organized arrays of translational disloca-

tions (Li, 1972; De Wit, 1981; Kröner, 1983; Marcinkowski, 1990; Seefeldt, 2001).

While such a reconstruction in terms of dislocations may be capable of capturing ex-

actly the stress fields associated with the original distribution of disclinations, the lat-
tice curvature may not always be so well reproduced (De Wit, 1981). It should be

noted that partial disclinations are needed to describe lattice misorientations of

strength less than 90� in a cubic lattice (60� in a hexagonal lattice), and disclination

dipole descriptions are generally required to allow termination of misoriented inter-

faces over finite distances, providing for bounded elastic energies (De Wit, 1971,

1981; Seefeldt, 2001).

Fig. 2 demonstrates how a simple tilt boundary may be represented either in terms

of dislocations or partial disclination dipoles (Li, 1972). In Fig. 2, u is the angle of



Fig. 2. Tilt boundary (left) comprised of edge dislocations (center) or partial disclination dipoles (right).
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misorientation, b is the magnitude of the Burgers vector, x is the magnitude of the

Frank vector (i.e., the strength of the individual disclination), h is the spacing be-

tween edge dislocations, l is the spacing between disclination dipoles, and 2r is the
characteristic spacing between partial wedge disclinations comprising each disclina-

tion dipole. Pure twist boundaries may be constructed from either screw dislocations

or partial twist disclination dipoles in an analogous fashion (Seefeldt, 2001), and

general grain boundaries – including all types of coincident-site interfaces such as

deformation twins – can be built up from a mixture of dislocation or disclination

types. A certain amount of stored energy is associated with the stacking fault pro-

duced by each partial disclination, analogous to the stacking fault energy associated

with partial dislocations. Li (1960, 1972) demonstrated for an isotropic linear-elastic
solid the equivalence between the strain energy density of a wedge disclination dipole

and a finite wall of edge dislocations. We note that for general boundaries, while a

suitable representation of the lattice configuration at the microscopic level in terms

of discrete dislocations alone is always possible, we find the disclination concept a

useful vehicle for engendering additional degrees-of-freedom to our continuum the-

ory to distinguish and isolate the role of long range, cooperative defects in accommo-

dation of lattice strain and curvature.

In the present paper we develop a continuum theory of finite elastoplasticity for
crystalline metals containing continuous distributions of dislocation and disclination

defects. Our theory distinguishes, in a novel manner, between kinematic and ener-

getic contributions from geometrically necessary dislocations attributed to heteroge-

neous plastic deformation fields and disclination-type boundary structures

associated with initial and evolving subgranular lattice orientation gradients. A

three-term multiplicative decomposition of the deformation gradient is suggested

in Section 2 following examination of a deforming crystalline volume element
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containing ensembles of lattice defects. A linear connection describing spatial varia-

tions in the configuration of a triad of lattice director vectors is introduced, consisting

of contributions of stretch and rotation from the macroscopic lattice deformation

field and micropolar degrees-of-freedom that capture additional lattice rotation due

to disclinations. Standard methods of differential geometry are employed to construct
the density tensors of geometrically necessary dislocations and disclinations, with the

former accommodating incompatible elastic (or plastic) deformation gradients asso-

ciated with heterogeneity of dislocation glide, and the latter capturing additional mis-

orientations across subgrain boundaries, for example. In Section 3, we outline

fundamental balance laws, thermodynamic restrictions, energy density functions,

and kinetic prescriptions needed to complete the theory. Section 4 consolidates the

main elements of the theory and offers comparisons with dislocation-based plasticity

models from the literature. A discussion of potential applications follows in the clos-
ing remarks, with a simple example given in Appendix A illustrating how the frame-

work can facilitate description of the formation of cellular substructures observed in

FCC metals at low homologous temperatures and large strains.

The following notation is used. Vector and tensor quantities are typically repre-

sented with boldface type, while scalars and individual components of vectors and

tensors are written in italics. The index notation is often invoked for clarity, follow-

ing the Einstein summation convention and distinguishing between covariant (sub-

script) and contravariant (superscript) components, unless noted otherwise.
Current configuration indices are written in lower case Latin, reference configuration

indices in upper case Latin, and intermediate configuration indices are written using

Greek symbols. Juxtaposition implies summation over two repeated adjacent indices

(e.g., ðABÞ:ba ¼ AacBcb). The dot (scalar) product of vectors is represented by the

symbol ‘‘�’’ (e.g., a � b = aagabb
b, with gab components of the metric tensor). Angled

brackets denote a dual (scalar) product (e.g., for second-rank tensors,

ÆA,Bæ = tr(AB) = AabB
ba, and for contra-covector pairs, Æa,bæ = aab

a). The colon

denotes contraction over repeated pairs of indices (e.g., A:B = tr(ATB) = AabB
ab

and C:A = CabcdAcd). The symbol ‘‘�’’ represents the tensor (outer) product (e.g.,

(a�b)ab = aabb). Superposed �1, T, and ‘‘�’’ denote inverse, transpose, and material

time derivative operations, respectively. Additional notation is clarified later as it

appears in the text.
2. Kinematics

Consider a crystalline volume element cut from a single crystal (though perhaps

originally embedded within a polycrystal) and containing one or more lattice discon-

tinuities (i.e., dislocation and/or disclination defects), as shown in Fig. 3. We invoke

the following notation for configurations of volume elements: v0 ” b0 � B0,
~v � ~b � ~B, and v ” b � B, where global reference, intermediate, and current configu-

rations of the entire macroscopic body are labeled B0, ~B, and B, respectively. Typical

dimensions of the referential volume v0 are assumed to adhere to the following

inequalities:



Fig. 3. Crystal volume element with defects: (a) reference configuration b0, (b) unloaded intermediate

configuration ~b, and (c) current configuration b.
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a0 � lref 6 LG; ð1Þ
where lref �

ffiffiffiffi
v03

p
is the scalar effective length of an edge of the reference volume ele-

ment (Fig. 3(a)), and a0 and LG are the lattice parameter and average grain diameter,

respectively. Taking a0 � 10�10 m and LG � 10�5 m–10�3 m as representative of
engineering metals, we assume lref � 10�8 m–10�4 m to satisfy Eq. (1). In Fig. 3

the sizes of the defects (e.g., Burgers vectors) relative to the size of the volume ele-

ment are exaggerated for clarity of presentation. It is noted that we do not require

the referential volume to constitute a statistically representative volume element in

the sense of Hill (1972). Low defect densities are admissible. Dislocations are repre-

sented by the symbol ^, and disclinations by the symbol ..
The three configurations of the volume element shown in Fig. 3 are defined as fol-

lows. The reference configuration volume v0 is the crystal lattice as it existed prior to
application of applied external forces (typically, and rather arbitrarily, at an initial

time), such that it is free of traction along the external boundary s0. The current con-

figuration volume v is the deformed crystal lattice, with non-vanishing traction vec-

tor t per unit current area applied on its external boundary. The defects present in v0
may slip over a finite distance as a result of the applied loading and may exit the vol-

ume element in the current configuration, and additional defects may enter the vol-

ume element during the history of loading. The intermediate configuration volume ~v
is achieved by unloading the current volume v by an inverse elastic deformation field
Fe� 1 associated with traction removal from the surface of the volume, as will be de-

fined more precisely later. We remark that here ~v is not necessarily the usual inter-

mediate configuration of multiplicative finite elastoplasticity (cf. Lee and Liu,

1967; Asaro, 1983). The local deformation gradient f for material points with local

coordinates XA within the volume element v0 is defined as the tangent mapping be-

tween reference and spatial configurations, i.e.,

f � T/X ¼ o/a

oXA ga �GA ¼ xa:;Aga �GA; ð2Þ

where ga and GA are basis vectors and covectors assigned to the current and refer-
ence states, respectively, and xa = ua(XA,t) away from displacement discontinuities.

We note that f cannot be defined by Eq. (2) in locations in the immediate vicinity of

slip planes over which dislocations have passed, for example, where the lattice
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deformation is discontinuous. In other words, it is a discontinuous, anholonomic

mapping in such locations (cf. Clayton et al., 2004b).

The total deformation gradient F for the crystal element is specified by the motion

of its external boundary, assuming homogeneous basis vectors in the reference and

current configurations for simplicity, i.e.,

F � 1

v0

Z
s0

xanA ds0

� �
ga �GA ¼ F a

:Aga �GA; ð3Þ

with n ds0 an oriented reference area element, as shown in Fig. 3. When a defect line

crosses the element�s boundary in the current state, the coordinates xa will be multi-

valued functions of XA. In such cases we take for the contribution to (3) an average

of the contributions of the coordinates xa+ and xa� on opposite faces of the discon-

tinuity at the boundary, i.e., ð2v0Þ�1R
s0
ðxaþ þ xa�ÞnA ds0. Notice that when the local

deformation field is purely elastic, meaning no defect generation or motion occurs

between reference and current states, xa are continuous, single-valued, and differen-
tiable functions of XA, and Eq. (3) reduces to

F a
:A ¼ 1

v0

Z
s0

oxa

oXA dv0 ¼
1

v0

Z
s0

f a
:A dv0 ð4Þ

upon invocation of the generalized Gauss�s theorem (Hill, 1972; also see derivation

in Clayton and McDowell, 2003).
We define at the scale of the volume element a recoverable elastic deformation gra-

dient Fe = VeRe. The elastic stretch Ve is associated with the average externally ap-

plied stress acting on the element and is determined explicitly from (Clayton and

McDowell, 2003)

Ve ¼
Z
s0

x� n ds0

� � Z
s0

x̂� n ds0

� ��1

; ð5Þ

where x̂ are the local coordinates of the external boundary of the element corre-

sponding to a specially defined, second traction-free intermediate configuration b̂,
i.e., with t̂ ¼ 0, as shown in Fig. 4. Configuration b̂ arises from instantaneous re-

moval of traction along the boundary, constrained such that rotation of the volume

element, Re�1, does not occur. The unloading procedure is assumed instantaneous –

to avoid viscous inelasticity upon load removal – with inertial effects neglected (Kra-

tochvı́l, 1971; Clayton and McDowell, 2003). Disclinations and dislocations within

the volume element are locked in during this hypothetical process, with no defect
motion or generation/annihilation permitted during unloading. Correspondingly,

the defect populations in Figs. 3(b) and (c) are identical apart from the net elastic

unloading and rigid body motion of the volume element. Since lattice defects are

not introduced during unloading, Fe (or its inverse) does not alter the holonomicity

(or lack thereof) of the material within the volume element, at the microscale. How-

ever, since the deformation achieved upon unloading may not be compatible across

neighboring volume elements, Fe is generally anholonomic (i.e., incompatible) at the

macroscale, in this case defined as corresponding to length scales significantly larger
than that of the volume element shown in Fig. 3. In other words, when traction is
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removed from the volume of the element, its boundary may undergo deformation

that is compatible or incompatible with neighboring elements, with the degree of

incompatibility depending upon the scale of volume considered relative to the distri-

bution of defects contained within the volume. The elastic rotation tensor Re is deter-

mined such that each member of a triad of lattice director vectors assigned to the

centroid of the crystal element deforms between configurations ~b and b as

da ¼ F e�1
� �a

:a
~da; ð6Þ

with (a,a = 1,2,3). As depicted in Fig. 4, the director vectors in the current (b) and

intermediate ð~bÞ configurations are labeled with Latin and Greek subscripts as da and
~da, respectively. Notice that these directors map between configurations in an anal-

ogous fashion to components of the ‘‘slip plane normal vectors’’ of conventional

crystal plasticity theory (Asaro, 1983), and that Re is assumed to encompass any ri-

gid body rotations of the entire (poly)crystal in global configuration B. Furthermore,

when temperature changes occur, Fe is assumed to capture the net thermal expansion

or contraction of the volume element and the corresponding change in the lattice

directors, most typically assumed in practice to be an isotropic deformation mode

in engineering metals with cubic crystalline structure, though possibly anisotropic
in non-cubic lattices (cf. Nye, 1957). In this context, the volume element in thermoe-

lastically unloaded configuration ~b is of uniform reference temperature and null

average stress, and Fe is referred to as the recoverable thermoelastic deformation gra-

dient. The total lattice deformation gradient, introduced as FL in Fig. 4, is discussed

in detail later in the text.

We next introduce the average plastic deformation gradient for the volume ele-

ment, written here as Fp. As demonstrated by Teodosiu (1969), Rice (1971), and Or-

tiz and Repetto (1999), the discontinuous plastic deformation gradient in the vicinity
of a single moving dislocation may be estimated in terms of the Burgers vector and

slip plane geometry. When multiple mobile defects are considered, the time rate of

plastic deformation over some finite volume (e.g., that of Fig. 3) may be character-

ized in terms of the defect fluxes, i.e.,
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�L
p � _F

p
Fp�1 ¼

X
j

�ajt � _�n
j

þ þ
X
k

jkrk�h
k
t � _�f

k

þ

 !
: �e; ð7Þ

with jk a scalar geometry factor (Li and Gilman, 1970) and �e the rank three covar-

iant permutation tensor. Generally hereafter, we use the overbar notation to refer to

quantities framed in configuration �b of Fig. 4. In Eq. (7), summation is applied over j
populations of straight dislocation lines, each with velocity vector _�n

j

þ, and k popula-

tions of straight disclination lines, each with velocity vector _�f
k

þ and effective disclina-

tion radius rk. The total (as opposed to net) dislocation and disclination density

tensors introduced in (7) are defined as

�ajt � �qj
þ þ �qj

�
� �

�b
j
þ � �n

j
; �h

k
t � �gkþ þ �gk�

� �
�xk
þ � �f

k
; ð8Þ

with �qj
þ and �qj

� the densities (line length per unit volume) of positively and negatively

signed dislocations, where, for each value of j, the positive and negative dislocations

share the same tangent line �n
j
but oppositely oriented Burgers vectors �b

j
þ ¼ ��b

j
� and

velocities _�n
j

þ ¼ � _�n
j

�. Analogously, �gkþ and �gk� are densities (line length per unit vol-

ume) of signed disclinations with tangent lines �f
k
and Frank vectors �xk

þ ¼ ��xk
�. Eq.

(7) extends previous works of Teodosiu (1969), Lardner (1974), and Werne and Kelly

(1978) to include disclination line contributions, following the paper by Li and Gil-

man (1970) on disclinations in polymers. Similar expressions could be formulated to

include curved defect lines (cf. Teodosiu, 1969; Das et al., 1973), though these tend to

be somewhat more complex as the tangent vectors of the defects are no longer spa-

tially constant. For example, Teodosiu (1969) derived an expression for the velocity

gradient contribution from a mobile density of strictly circular dislocation loops. The

discrete approximation of (7) and (8) may be acceptable given that contemporary 3D
dislocation dynamics models often piecewise-linearize curved dislocation segments

(cf. Zbib et al., 1998).

Eqs. (7) and (8) have been introduced for illustrative purposes, to show how mov-

ing discrete crystal defects contribute to the time rate of change of Fp. Alternatively,

we often find it more convenient to write Eq. (7) from the perspective of crystal plas-

ticity kinematics, i.e.,

�L
p ¼

X
i

_ci�si � �mi þ �L
p

v ; ð9Þ

where summation runs over i slip systems, each with shearing rate _ci, contravariant
direction vector �si, and plane normal covariant vector �mi. The term �L

p

v includes de-

fect motions not readily describable in terms of slip or pseudo-slip, for example non-

conservative plastic flow stemming from dislocation climb and certain motions of
disclination tangent lines and/or axes of rotation accompanied by vacancy formation

(Das et al., 1973). Shearing rates on each system may be expressed as

_ci ¼ �qibvi þ �gijrxzi þ #i _�q
i
; _�g

i
� 	

; ð10Þ

with �qi ¼ �qi
þ þ �qi

� the total (as opposed to net) mobile dislocation line density, b the

magnitude of the Burgers vector, vi the signed mean scalar dislocation velocity,
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�gi ¼ �giþ þ �gi� the total mobile disclination density, x the magnitude of a typical

Frank vector, j and r denoting a geometric factor and effective disclination radius

both assumed identical over all slip systems for simplicity (this assumption can be

relaxed to address a distribution of partial disclination dipoles), and zi a signed mean

scalar velocity of disclination lines moving on slip system i, in direction �si. The first
term in (10) follows from Orowan (1940), the second from Li and Gilman (1970).

Contributions of time rates of generation and annihilation of mobile defect densities

to the slip rates are embodied by the functions #i (cf. Pe�cherski, 1983), which may

additionally be extended to incorporate dislocation flux through boundaries of finite

volumes (including effects of time rates of geometrically necessary dislocation densi-

ties), as suggested by Arsenlis et al. (2004). Velocities are assumed positive for defects

moving in the slip direction �si and negative for those moving in the direction ��si. The
plastic deformation gradient Fp is assumed to leave the lattice director vectors unper-
turbed; as shown in Fig. 4, dA and �d�a are identical when represented in a consistent

global coordinate system. Notice also that Fp is isochoric when �L
p

v ¼ 0 and �si and �mi

are orthogonal, i.e.,

_J
p ¼ Jptr �L

p� �
¼ Jp

X
i

_ci �si; �mih i ¼ 0; ð11Þ

where Jp is the Jacobian determinant of Fp and tr denotes the trace operation. We

remark that the relative contribution of each of �qi and �gi to the plastic velocity gra-

dient in (9) is set forth implicitly by the choice of flow rule for _ci (see later Eq. (57)),
formulation of which may be guided by heuristic kinetics principles such as maximal

dissipation. Alternatively, one may approach the flow rule by capturing characteris-

tics of dislocation and disclination driving forces versus velocities, explicitly describ-

ing _ci in (10).

Consider for a moment the usual multiplicative decomposition F = FeFp (Bilby
et al., 1957; Kröner, 1960; Lee and Liu, 1967) in the context of our volume averaging

framework. We have assumed that the entire deformation in fictitious configuration
�b is caused by the time-dependent generation and motion of displacement disconti-

nuities (dislocations and disclinations) integrated over the activated slip planes, via

the definitions of �L
p
in Eqs. (7) and (9). Neglected in the typical kinematic descrip-

tion F = FeFp, when applied to a crystalline volume of finite size, are the net effects of

residual lattice deformation fields contained within the volume element. These local

residual deformations are attributed to the local lattice strain fields in the vicinity of
each defect line and may also include residual lattice deformations arising from ther-

mal unloading from a heterogeneous temperature field. As a generalization of the

two-term decomposition, we propose a three-term multiplicative decomposition

for a crystal volume element (cf. Clayton and McDowell, 2003; Clayton et al.,

2004a) consistent with Fig. 4, i.e.,

F ¼ FeFiFp; ð12Þ
with F, Fe, and Fp defined already, leaving

Fi � Fe�1FFp�1; ð13Þ
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which may further decomposed as

Fi ¼ ViRi ¼ RiUi; ð14Þ
thus functioning as the net contribution to F of any residual elastic stretch (Vi, Ui)

and rotation (Ri) of the crystal lattice remaining upon unloading by the applied

stress. The residual lattice deformation arises from considering the (in)compatibility

of microelastic lattice strains and rotations within the defect kinematic fields, as per

the original concept of Bilby et al. (1955). The deformation (tangent) map Fi of (13)

is not necessarily a volume average, but rather an indicator of the net effects of local
deformation heterogeneity on the total volume-averaged deformation gradient. Eqs.

(7) and (9) regard the lattice as an aggregate of rigid ‘‘blocks’’ deforming by relative

sliding on slip planes between the blocks. The local residual lattice deformation,

whose net effects are embodied by Fi, is necessary to deform each block such that

the aggregate fits together into a single continuous piece in configuration ~b (Figs.

3 and 4), with the only displacement discontinuities within ~v attributed to incompat-

ibility in the immediate vicinity of the defect lines. Decomposition (12) was intro-

duced by the present authors to describe elastoplastic polycrystals (Clayton and
McDowell, 2003) and elastoplastic single crystals (Clayton et al., 2004a). It is intro-

duced here from a slightly different standpoint, for (thermo)elastic single crystals

containing a distribution of dislocation and disclination defects. We emphasize that

description (12) is scale dependent, depending upon the size of the crystal volume ele-

ment to which it is applied, and resolution dependent, depending upon the manner in

which local kinematics within the volume element are resolved and accounted for in

the homogenized description. Notice from Fig. 4 that Fi affects the representation of

the lattice directors, i.e.,

�d�a ¼ F ia
:�a
~da; ð15Þ

thereby accounting for slip system reorientation (see also later Eq. (63)) due to de-

fects contained within the volume element in the unloaded state and also any cumu-

lative director motion due to the disclination flux which, in contrast to the

dislocation flux, generally induces a net lattice rotation (cf. Lardner, 1973; Pe�cherski,
1983; and our later Eqs. (65)–(67)).

Fig. 5 conceptualizes the physics of Eq. (12) from the standpoint of (a) a Volterra

process and (b) a corresponding lattice for a volume element containing a single edge
dislocation. Notice how the displacement discontinuity in the wake of the dislocation

(i.e., left side of the cylinder in Fig. 5(a)) is sealed by the residual lattice deformation

gradient Fi. Prior to the application of Fi, for the body labeled �v in Fig. 5, elastic

strain fields are absent, and the plastic deformation gradient Fp is completely defined

in terms of the relative motion of the two halves of the lattice on opposite sides of the

slip plane (dotted line in Fig. 5(b)). Note also that �v is generally locally incompatible

across the entire slip path, containing slip discontinuities but no lattice strains, and is

free of internal residual stress fields. This is in contrast to ~v, which may contain inter-
nal residual stress and lattice strain fields but includes no discontinuities except for

those in the immediate vicinity of individual defect lines contained within the

volume.



Fig. 5. Configurations of crystal element containing edge dislocation: (a) Volterra model and (b) lattice.
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Please note that the particular sequence of deformation maps in (12) is chosen

based on rational arguments. The plastic deformation term Fp is the rightmost in

our decomposition, as it leaves the lattice vectors unaltered (Fig. 4), permitting iden-

tification of configuration �b of Fig. 4 with Mandel�s (1973) isoclinic configuration.

The residual deformation due to micro-heterogeneity in the presence of lattice de-

fects, Fi, is placed second in our decomposition, as it affects the lattice directors

via (15), yet is assumed unaffected by superposed rigid body motion or a change
in spatial coordinate frame (Kratochvı́l, 1972). Finally, the recoverable elastic defor-

mation Fe logically assumes the leftmost position, as the stretch Ve is associated with

unloading of the average traction acting on the volume element from the current

state (Eq. (5)) and the rotation Re accounts for all lattice rotations not embodied

in Fi, including net rigid body motions of the solid. The rotational components Ri

of Fi and Rp of Fp are assumed to evolve independently of rigid body motions of

the solid. Thus, under a change of spatial coordinates x ! Xx + c, for which X is

a unimodular rotation satisfying XT = X�1 and c is a spatially constant translation
vector, the deformation maps transform according to F! XF, Fe ! XFe, Fi ! Fi,

and Fp ! Fp.

We may also choose to introduce a fictitious local natural configuration b free of

all defect lines, slipped regions, and commensurate initial residual stresses, following

Teodosiu (1969) and Rice (1971). Eq. (12) is then extended to K ¼ FK0 ¼
FeFiFpK0 with K0 : Tb ! Tb0 the deformation gradient of the volume element

due to the creation of defect lines, grain boundaries, etc. (and possible residual elastic

lattice strains) present in the initial configuration v0. For modeling the deformation
of a structure from an engineering standpoint, knowledge of K0 and reconstruction

of b are not essential in our approach, since covariant components of the total defor-

mation gradient F are referred to the actual state of the body at t = 0, denoted here

by the local volume element v0. Furthermore, changes in free energy are defined here

with respect to the reference configuration or initial state, as opposed to the natural

state. The residual stresses and energy commensurate with K0 are usually not

considered explicitly in thermodynamic treatments of finite crystalline plasticity,

even when the map K0 is introduced in the kinematics (Teodosiu, 1969; Rice,
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1971; Teodosiu and Sidoroff, 1976; Hartley, 2003). Also, we mention that the afore-

mentioned theories refer the covariant leg of the plastic deformation gradient to the

generally anholonomic natural state, arriving at a decomposition F ¼ FeFpK�1
0 . This

contrasts with our model and those of Le and Stumpf (1996a) and Stumpf and

Hoppe (1997) that refer the covariant components of the plastic deformation gradi-
ent to the (initial) reference configuration, which is holonomic to the current config-

uration. The first fundamental difference between our stress-free ‘‘natural

configuration’’ b and our stress-free ‘‘intermediate configuration’’ ~b is this: the for-

mer is achieved via unloading each crystal element from the reference (i.e., initial)

configuration, while the latter is realized via unloading each element from the spatial

(i.e., current) configuration (Clayton et al., 2004b). The second difference is that

while ~b is achieved by external unloading of the local volume element, leaving this

volume intact at the microscale (as conceptualized in Fig. 4 by applying Fe�1 to b,
leading to configuration ~b with conditions ~t ¼ 0), the natural configuration b can

only be achieved by cutting the local volume element v0 into multiple pieces such that

the initial residual stresses are relaxed at the scale of the individual pieces. Of course,

when the initial configuration is a perfect lattice, such as in the left side of Fig. 5(b),

free of initial elastic lattice deformation associated with defects, there is no distinc-

tion between what we call natural and reference configurations (i.e., b and b0 coin-

cide) and K0 ¼ 1. Although not pursued here, it is possible to assign the initial

structure and lattice distortion fields corresponding to arbitrary initial defect topol-
ogy as part of K0 if the resulting free energy and residual strain fields are of interest.

Others have proposed three-term multiplicative decompositions for continuum

elastoplasticity exclusive of damage, although each within a slightly different context

than the present work. Kratochvı́l (1972) suggested the decomposition F = FeFiFp for

polycrystalline solids, with Fe the recoverable elastic deformation, Fp the viscoplastic

deformation, and Fi accounting for any other microstructural rearrangements – e.g.,

twinning and phase transitions – that influence the physical properties and hence, the

specific free energy density. Horstemeyer (1995) and Horstemeyer and McDowell
(1998) introduced the decomposition F = FeFiFp for a single crystal, with Fe and

Fp the usual elastic and plastic deformation gradient fields of crystal plasticity the-

ory, and with Fi representing time-dependent anelastic rearrangement of the crystal-

line lattice, associated with micro-residual stresses within the crystal, and possibly

accounting for the lattice deformation accompanying grain subdivision. Also consid-

ering single crystal plasticity theory, Butler and McDowell (1998) proposed the

decomposition F = FeFiFp, with Fi directly associated with heterogeneous grain sub-

division, distinct from the net contributions of dislocation glide embodied in Fp. Lion
(2000) introduced a decomposition F = FeFiFp, with the macroscopic polycrystalline

non-recoverable deformation decomposed into residual elastic (Fi) and plastic (Fp)

parts. Bammann (2001) and Regueiro et al. (2002) suggested a similar three-term

decomposition with Fi the incompatible residual elastic deformation gradient and

Fe the superposed compatible elastic deformation due to the applied stress. Hartley

(2003) suggested, from a discrete dislocation standpoint, the decomposition

F ¼ FeFiFpK�1
0 for a single- or polycrystalline volume element. In Hartley�s model

(2003), Fe is a compatible recoverable elastic deformation gradient associated with
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the traction acting on a representative volume of the material, and Fi is further mul-

tiplicatively decomposed into terms representing residual elasticity due to disloca-

tions contained within the volume element and incompatible elasticity due to

sources of deformation outside the element (e.g., intergranular incompatibility).

Our deformation mapping Fi includes effects arising from defects contained within
the volume element at time t, residual thermoelastic strains, and internal boundaries

and stacking faults left by moving defects such as partial dislocations and partial dis-

clination dipoles. Lattice-preserving contributions from mobile defects that have tra-

versed the volume prior to time t are embodied in the rate equations for Fp, (7)–(10).

It should be noted that our Eq. (12) is a multiscale decomposition, with the meaning

of each term dependent upon the specific scale (i.e., size of (poly)crystalline volume

element) to which it is applied, as discussed in Clayton and McDowell (2003). If en-

forced over a relatively homogeneously deforming region encompassing a statisti-
cally large number of grains, or a region encompassing a single crystal containing

a random distribution of defects for which there is no net Burgers vector (i.e., statis-

tically stored defects only), one would expect Fi ! 1 and Fe to be a holonomic defor-

mation field within this region, making ~b a compatible configuration. On the other

hand, when (12) is applied to describe a single crystal or polycrystal subjected to

nonuniform deformation (i.e., strain gradients), the corresponding volume element

will generally exhibit lattice curvature due to geometrically necessary defects, Fi will

not reduce to the identity mapping due to non-negligible net effects of residual lattice
deformation, and Fe will be anholonomic as a result of the heterogeneous stress state

existing across neighboring elements. We also remark that continuum finite element

simulations (Clayton and McDowell, 2003; Clayton et al., 2004a) suggest that the

magnitude of the stretch Vi of Eq. (14) remains small relative to that of the total ap-

plied stretch in isothermally deforming single crystals containing low-angle subgrain

boundaries.

The deformation of the lattice director vectors between configurations �b and b, as

depicted in Fig. 4, is dictated by the total lattice deformation FL � FeFi:

da ¼ FL�1
� ��a

:a
�d�a: ð16Þ

Assuming that the directors in configuration �b are orthonormal, and assigning an
external Cartesian coordinate system to the anholonomic space �b with corresponding

metric tensor

�d�a � �d�b ¼ �g�a�b ¼ d�a�b; ð17Þ

we define a metric CL in the spatial configuration associated with the total director

strain:

CL
ab � da � db ¼ FL�1�a

:a FL�1�b
:b

�d�a � �d�b ¼ FL�1�a
:a d�a�bF

L�1�b
:b : ð18Þ

Also introduced are coefficients of a linear (i.e., affine) connection C (cf. Eisen-

hart, 1926; Schouten, 1954; Wang and Truesdell, 1973) describing the absolute

change of the director vector field in the current configuration in terms of the covar-

iant derivative $, i.e.,
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rbda ¼ da;b � C::c
badc; ð19Þ

with the subscripted comma denoting partial differentiation with respect to current

coordinates x. The connection coefficients are defined by (Minagawa, 1979, 1981)

C::a
cb � FLa

:�a FL�1�a
:b;c þ Q::a

cb ¼ �C
::a
cb þ Q::a

cb ; ð20Þ

where �C
::a
cb � FLa

:�a FL�1�a
:b;c ¼ �FLa

:�a;cF
L�1�a
:b are coefficients of the so-called ‘‘crystal con-

nection’’ of non-Riemannian dislocation theories (Bilby et al., 1955; Noll, 1967;

Le and Stumpf, 1996b), and Q::a
cb are additional micropolar degrees-of-freedom rep-

resenting contributions of distributed disclinations to the spatial gradients of the lat-

tice director field. When disclinations are absent and the lattice directors are spatially

uniform in configuration �b, the expression for parallel transport da;b ¼ �C
::c
badc de-

scribes, to first order, the deformed lattice. Upon assuming that $bda = 0 (Minag-

awa, 1981), the connection (20) allows one to interpolate for the directions and

magnitudes of the lattice directors between centroids of neighboring crystal volume

elements. For example, in the trivial case when C::a
cb ¼ 0, the lattice directors are spa-

tially constant. The crystal connection ð�CÞ component of (20) accounts for effects of
first-order spatial gradients of (the inverse of) FL, while the variable Q of (20) ac-

counts for the additional spatial variations of lattice directors not captured by the

first spatial gradient of FL. The average continuum deformation of the director vec-

tors located at the volume element�s centroid is determined by FL, as indicated by

Eq. (16). Lattice stretch and rotation gradients (e.g., at the scale of subgrain cells

and cell blocks) in the current configuration are represented by the coefficients

(20). Note that unlike the deformation gradient, C is not a two-point tensor or con-

figurational mapping, but rather a spatial operator. The covariant components of Q
are assigned the following anti-symmetry property (recall that we use italic font for

individual components of non-scalar entities such as Q)

Qcba � Q::d
cbC

L
da ¼ �Qcab ¼ Qc ba½ �; ð21Þ

with bracketed indices anti-symmetrized, i.e., 2Qc[ba] = Qcba�Qcab. Quantities Qcba

and Q::a
cb are effectively equivalent rotation measures only when lattice strains are neg-

ligible, i.e., when CL
da � dda. From (21), the connection is metric, since the covariant

derivative of CL vanishes:

rcC
L
ab ¼ CL

ab;c � �C
::d
ca C

L
db � �C

::d
cbC

L
ad|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

�Q::d
ca C

L
db � Q::d

cb C
L
ad ¼ �2Qc abð Þ ¼ 0; ð22Þ

where parentheses denote symmetrization, e.g., 2Qc(ba) = Qcba + Qcab. Components

of the torsion tensor T of the connection C are given by

T ::a
cb � C::a

cb � C::a
bc ¼ �T ::a

cb þ 2Q::a
cb½ �; ð23Þ

where �T ::a
cb is the torsion of the crystal connection, often associated with the density of

geometrically necessary dislocations when disclinations are absent (Bilby et al., 1955;

Kröner, 1960; Noll, 1967). The components of the Riemann–Christoffel curvature

tensor R...a
bcd formed from the connection coefficients C::a

cb are defined as (Schouten,

1954; Marsden and Hughes, 1983)
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R...a
bcd � C::a

db;c � C::a
cb;d þ C::a

ceC
::e
db � C::a

deC
::e
cb; ð24Þ

which, because C::a
cb ¼ �C

::a
cb þ Q::a

cb , we are able to rewrite as

R...a
bcd ¼ �R...a

bcd|{z}
¼0

þ2r c½ Q
b::a
d� þ Q::a

ceQ
::e
db � Q::a

deQ
::e
cb þ T ::e

cdQ
::a
eb ; ð25Þ

where the curvature from the crystal connection, �R...a
bcd , vanishes identically since �C is

integrable (cf. Le and Stumpf, 1996b). Using (21), we can express the fully covariant

rendition of the curvature tensor, Rabcd � CL
af R

...f
bcd , as (Minagawa, 1979)

R ab½ �cd ¼ 2r½cQd�½ba� þ T ::e
cdQe ba½ �; R abð Þcd ¼ 2r½cQd�ðabÞ þ T ::e

cdQe abð Þ ¼ 0: ð26Þ

Thus from (24) and (26), Rabcd = R[ab][cd], and R vanishes completely when Q = 0.

Consider a Burgers circuit c in the current configuration, enclosing area a com-

prised of oriented differential elements n da. A total Burgers vector accounting for

the incompatibility induced by the torsion and curvature tensors may be written

as (Lardner, 1973; Minagawa, 1979)

Ba � edbc
Z
a

T ::a
bc � R...a

ecbx
e

� �
nd da ¼ Ba

T þ Ba
R; ð27Þ

where 2Ba
T � edbc

R
aT

::a
bcnd da describes the closure failure of c and 2Ba

R � ebdcR
aR

...a
ecbx

end da measures the change in direction of position vector xe upon parallel

transport about c with respect to the connection C. We can re-write (27) in terms

of the second rank geometrically necessary dislocation tensor a and second rank geo-

metrically necessary disclination tensor h, each referred to the current configuration
b:

Ba ¼
Z
a

aad þ CL�1af efgbh
gdxb

� �
nd da; ð28Þ

where

2aad � edbcT ::a
bc ; 4hgd � egbaedceRabce: ð29Þ

Fig. 6(a) illustrates the total Burgers vector B = BT + BR introduced in Eq. (27) in
terms of parallel transport of a lattice director vector da about an incompatibility

circuit c (Kondo, 1964). When viewed from the standpoint of a Volterra process
Fig. 6. Burgers vector with contributions from (a) dislocations (BT) and disclinations (BR), and

(b) director vector rotation due to 60� wedge disclination.
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(Fig. 1), one can imagine the body in Fig. 6(a) to consist of the superposition of a

single edge dislocation (producing the incompatibility BT) and a single wedge discli-

nation (producing the incompatibility BR). Fig. 6(b) shows the rotation of a director

parallel-transported about a complete 60� wedge disclination in a hexagonal lattice

(Lardner, 1974).
Notice that a and h contain enough information to fully reconstruct T and R,

respectively, because of the skew-symmetry properties of these quantities:

T ::a
cb ¼ T ::a

½cb� ¼ ecbda
ad ; Rabcd ¼ R½ab�½cd� ¼ ebaeecdf h

ef : ð30Þ

The geometrically necessary defect density tensors of (29) are related to the summed

contributions of discrete crystal defects as

a ¼
X
j

qjbj � nj; h ¼
X
k

gkxk � fk; ð31Þ

with qj, bj, and nj the net scalar dislocation line density, Burgers vector, and unit tan-

gent line, respectively, for dislocation population j, and with gk, xk, and fk the net

scalar disclination line density, Frank vector, and unit tangent line vector, respec-

tively, for disclination population k. All quantities in (31) are referred to the spatial

configuration b.
Notice that a and h do not account for curved defect segments and combinations

of defect lines that contribute no net Burgers vector or Frank vector. This becomes

clear when we re-write (31) in terms of positively and negatively signed populations

(Werne and Kelly, 1978):

a ¼
X
j

qj
þ � qj

�
� �

bjþ � nj; h ¼
X
k

gkþ � gk�
� �

xk
þ � fk; ð32Þ

where bjþ ¼ �bj� and xk
þ ¼ �xk

�. As discussed following (8), curved defect segments

can be treated via piecewise linearization (Zbib et al., 1998; Zbib and De La Rubia,

2002) in order to address the distribution of line tangents of curved dislocation lines.
We emphasize that the total mobile defect densities of (8) contribute to the plastic

velocity gradient (7), while the net defect densities (both mobile and immobile) con-

tribute to the equivalent incompatibility measures in (29), (31) and (32). Ashby

(1970) introduced the concept of statistically stored dislocations to represent defects

that accumulate under homogeneous plastic flow but do not contribute to net incom-

patibility. Later we appeal to this concept by introducing densities of statistically

stored dislocations and statistically stored disclinations allowing us to quantify influ-

ences of differences between total cumulative defect densities and the geometrically
necessary densities.

Linearized compatibility equations for the net defect density tensors of (29), (31)

and (32) follow from identities of Bianchi and Schouten (cf. Schouten, 1954), ex-

pressed in Cartesian coordinates as

T ::a
bc;d½ � ¼ R...a

bcd½ � ! CLa
� �:b

a;b
¼ eabch

bc; R...a
b cd;e½ � ¼ 0 ! hab;b ¼ 0: ð33Þ

In a small-strain formulation (i.e., additive elastoplastic strains and rotation gradi-

ents), De Wit (1981) inferred from equations analogous to (33) that disclinations
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may act as sources/sinks for dislocations, and that disclination lines cannot end

abruptly within a crystal. This linearization, while physically illustrative, is not essen-

tial in our general finite strain and rotation framework.

Complete pull-backs of a and h to the intermediate configuration ~b are written as

follows:

~aab � JeF e�1a
:a aabF e�1b

:b

¼ JeF e�1a
:a ebcdFLa

:�a FL�1�a
:d;c F e�1b

:b þ JeF e�1a
:a ebdcQ::a

dc½ �F
e�1b
:b ; ð34Þ

~h
ab � JeF e�1a

:a habF e�1b
:b ¼ 1

4
JeF e�1a

:a eadgebceR½gd�½ce�F
e�1b
:b ; ð35Þ

with Je the Jacobian determinant of Fe. Variables ~a and ~h may be regarded as ‘‘elas-

tic’’ in the sense that they are derived completely from lattice kinematic quantities Fe,

Fi, Q and/or spatial gradients of Fe, Fi, and Q. On the other hand, the following
‘‘plastic’’ quantities are now introduced in the sense of push-forwards from the ref-

erence configuration:

~aabp � �~J
�1~F

a

:Ae
BCDF p�1A

�a F p�a
D;C

~F
b

:B � ~J
�1~F

a

:Ae
BDCQ̂

::A

DC½ �
~F
b

:B; ð36Þ

~h
ab

p � �~J
�1~F

a

:Aĥ
AB~F

b

:B ¼ � 1

4
~J
�1~F

a

:Ae
ADGeBCER̂½GD�½CE�~F

b

:B; ð37Þ

with ~F
a

:A � F ia
�a F

p�a
A the residual deformation gradient and ~J the Jacobian determinant

of ~F. By Q̂ and R̂ we denote, respectively, a generalized rank 3 inelastic micro-rota-

tion variable and rank 4 curvature tensor on the reference coordinate frame such

that the ‘‘total’’ defect densities ~aT and ~hT vanish in the intermediate configuration,

i.e.,

~aT � ~aþ ~ap ¼ 0; ~hT � ~hþ ~hp ¼ 0: ð38Þ
Please note that Q̂ of (36) and R̂ of (37) are not constrained to be compatible with a
linear connection defined on the reference frame, in contrast to Q of (34) and R of

(35) which are compatible with the connection coefficients C of Eq. (20) in the cur-

rent configuration. Equations given in (38) are equivalent to the additive relations of

Eringen and Claus (1970) in the linearized limit. Also, when disclinations vanish,

Q = 0, ~h ¼ ~hp ¼ 0, and the first of (38) gives JeF e�1a
:a ebcdFLa

:�a FL�1�a
:d;c F e�1b

:b ¼
~J
�1~F

a

:Ae
BCDF p�1A

�a F p�a
D;C

~F
b

:B, following automatically from relations F ¼ FeFiFp ¼ FLFp

and
H
cF

L�1 dx ¼
H
CF

p dX for current (reference) Burgers circuit c (C).
3. Balance laws, thermodynamics, and constitutive framework

The net nominal stress for the crystalline element illustrated in Fig. 3 is defined as

S � 1

v0

Z
s0

X� t0 ds0; ð39Þ
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where t0 is the traction vector per unit reference area. Eq. (39) reduces to

v0S ¼
R
v0
s dv0, with s the local nominal stress within the volume element, only under

quasi-static conditions and when discontinuities within the volume are traction-free

(Nemat-Nasser, 1999). The net Cauchy stress is defined by

Rab � J�1F a
:AS

Ab; ð40Þ
with J � detðFÞ

ffiffiffiffiffiffiffiffiffi
g=G

p
the Jacobian determinant of the deformation gradient F, and

g and G determinants of metric tensors gab and GAB associated, respectively, with
spatial and reference coordinate systems shown in Fig. 3. Standard balances of mass,

linear momentum, and angular momentum at the level of the volume element are

now, respectively, asserted, i.e.,

q0 ¼ qJ ; SAa
Aj þ q0f̂

a ¼ q0€x
a; F a

:AS
Ab ¼ SAaF b

:A; ð41Þ

with q0, q, and f̂
a
the reference mass density, current mass density, and body force

component per unit reference volume, respectively, and the vertical bar denoting

covariant differentiation with respect to the reference coordinate system. From

(40) and the last of (41), Rab = R(ab). We add the caveat that one may choose to delve

at this point into a polar or hyperstress theory (cf. Toupin, 1962; Garikipati, 2003)

for which the Cauchy stress tensor is non-symmetric if dislocation spacings are on

the order of the length scale of the volume element, or if the volume element has

a strong net dislocation density resulting in local stress fluctuations that may trans-
late into higher order moments of stress on the same order of magnitude as the aver-

age stress, Eq. (39). For simplicity we assume here that the volume element

considered is large enough to permit us to neglect higher order stresses in the mac-

roscopic momentum balances of (41), though we shall account explicitly for the net

effects of heterogeneity of lattice deformation through inclusion of Fi and the defect

density tensors (representing lattice curvature) in the free energy function, micro-

scopic momentum balances, and kinetics framework that follow.

Introducing the average internal energy per unit reference volume U0, effective
heat flux vector q, and average heat generation per unit reference volume H0, the lo-

cal form of the balance of energy is written

_U 0 ¼ SAagab _F
b
:A � qAAj þ H 0; ð42Þ

where the quantities in (42) are averaged over a local volume element of size consis-

tent with the preceding discussion accompanying (39). The entropy production and

reduced dissipation inequalities are written in the reference frame as

_N 0 P
H 0

T
� qA

T

� �
Aj
; SAagab _F

b
:A �

1

T
qAT Aj
� �

P _w0 þ N 0
_T ; ð43Þ

with N0 the entropy per unit reference volume and the Helmholtz free energy

w0 ” U0�N0T. Thermodynamic restrictions (cf. Coleman and Noll, 1963; Coleman

and Gurtin, 1967) can be deduced from inequalities (43), the second written in terms

of two-point tensors S and F and the free energy per unit reference volume w0. We

find it useful to express (43) in terms of quantities with all components referred to
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intermediate configuration ~b of Fig. 3 (i.e., the reference state for instantaneous ther-

moelastic response – cf. Scheidler and Wright, 2001), which we view as the most con-

venient configuration for deducing thermodynamic restrictions and posing

constitutive assumptions (see also Regueiro et al., 2002). After somewhat lengthy

but standard manipulations (see Clayton et al., 2004a), the second of (43) can be
written as

~L
a

:b
~M

Tb

:a � ~w _~F
a

:A
~F
�1A

:a � 1

T
~qaT ;að Þ P _~wþ ~N _T ; ð44Þ

where ~L
a

:b � F e�1a
:a

_F
a

:AF
�1A
:b F eb

:b is a velocity gradient, ~M
a

:b � JeF eTa
:a RacgcbF

e�Tb
:b is the

Mandel stress (Mandel, 1974), and the heat flux vector referred to ~b is defined by
~qa � ~J

�1~F
a

:Aq
A, with the anholonomic temperature gradient T ;a � T jA:~F

�1A
:a . The free

energy and entropy per unit volume in ~b are found by ~w ¼ ~J
�1
w0 and ~N ¼ ~J

�1
N 0,

respectively.

We make the following general assumption regarding the dependency of the

Helmholtz free energy function for the crystalline volume element, referred to con-

figuration ~b and neglecting the effects of temperature gradients within the element:

~w ¼ ~w ~C
e
;Vi; ~a; ~h;~eq;~eg; T ; ~g

� 	
¼ ~w ~C

e

ab; V
ia
:b; ~a

ab; ~h
ab
;~eq;~eg; T ; ~gab

� 	
: ð45Þ

The covariant elastic strain tensor ~C
e

ab � F ea
:a gabF

eb
:b is included to model the change of

average elastic energy density with a change of external loads, a standard constitu-

tive assumption in finite crystalline elastoplasticity theories (cf. Le et al., 1998).

The left stretch tensor associated with Fi, denoted by Vi, is incorporated to reflect
contributions to the free energy from residual microelasticity within the volume ele-

ment, and may be non-negligible when the deformation within the volume element is

heterogeneous (Clayton and McDowell, 2003). The elastic energies due to net lattice

curvatures in the volume element induced by geometrically necessary dislocations

and disclinations are reflected, respectively, by the inclusion of ~a and ~h, defined in

(34) and (35). As a point of clarification, recall that the total mobile defect density

tensors �ajt and �h
k
t contributing to the plastic velocity gradient were introduced in

(7) and (8), while the net geometrically necessary defect density tensors a and h (these
include both mobile and immobile defects) were formally introduced in (31) and (32).

Notice that when Q = 0 (no disclinations) and F i = 1, we have ~aab � JeF e�1a
:a eabc

F e�1b
:c;b ¼ Jp�1F pa

:A e
ABCF pb

:C;B, meaning that (45) agrees with constitutive assumptions

made in previous gradient-based dislocation theories from the literature (cf. Stein-

mann, 1996; Regueiro et al., 2002). Since, as mentioned already in Section 2, the ten-

sors ~a and ~h in (45) do not include a measure of the total length of all dislocation and

disclination lines within a given volume element (examples include statistically stored

defects consisting of closed loops and tangent lines of opposing signs), the scalar
parameters ~eq � b

ffiffiffiffiffi
~qS

p
and ~eg � rx

ffiffiffiffiffi
~gS

p
are incorporated to model the net contribu-

tions of the elastic self-energy of the statistically stored dislocation density (line

length per unit volume in ~b), ~qS , and the statistically stored disclination density (also

a line length per unit volume in ~b), ~gS, to the free energy. We regard ~eq and ~eg as local
residual lattice strain measures associated with these defects (Bammann, 2001).

Please notice that heterogeneity of lattice deformation (reflected in (45) by Vi, ~a,
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and ~h) is not essential to engender substantial energy storage, as ~eq and ~eg account for
a large fraction of the observed stored energy of cold working under conditions of

homogeneous plastic flow and increase in its magnitude with the accumulation of

the average plastic deformation, Fp. Rather, these tensorial variables tend to reflect

scale effects, particularly the latter two. Additionally, in an effective sense, Vi in (45)
accounts for higher order moments of distributions of lattice defects within the vol-

ume element that lead to internal heterogeneity, such as dislocation pile-ups, for

example, that are not accounted for by the first-order averages over the volume ele-

ment of defect fields ~a, ~h, ~eq, and ~eg. Reasoning for inclusion of metric ~g will become

clear later. Each variable in (45) is considered invariant with respect to changes in the

spatial frame of reference. We choose not to include the rotational part Ri of Fi in the

free energy function because material rotations of a local volume element in un-

loaded configuration ~b, while affecting orientations of the lattice directors via (15),
do not influence the amount of stored elastic energy contained within that element.

We note that the presence of Vi, ~a, and ~h in the free energy function allows for

contribution of surface or interfacial energy of grain boundaries, for example, in

manifesting certain length scale (surface area to bulk volume) effects on flow stress,

provided the dislocation–disclination content of such boundaries is described. Such

effects are dominant for nanocrystalline materials.

The dissipation inequality (44) may be re-written as follows, upon introduction of

generalized second-rank thermodynamic forces ~r and ~l:

_~w 6 ~L
a

:b
~M

Tb

:a � ~w _~F
a

:A
~F
�1A

:a � 1

T
~qaT ;að Þ � ~N _T þ ~rab

_~a
ab

T|fflffl{zfflffl}
¼0

þ ~lab
_~h
ab

T|fflffl{zfflffl}
¼0

; ð46Þ

where the final two terms vanish upon consideration of the material time derivative

of Eqs. (38). Substituting (45) into (46) and assuming that (46) must hold as ~C
e
and T

are varied independently of the other constitutive variables (e.g., a reversible thermo-

elastic process), we arrive at the usual constitutive relations, i.e.,

~S
ab � 2

o~w

o~C
e

ab

¼ JeF e�1a
:a RabF e�1b

:b ; ~N ¼ � o~w
oT

; ð47Þ

with ~S a macroscopic elastic second Piola–Kirchhoff stress, as well as the strong form

of the reduced dissipation inequality,

~P; ~L
p

D E
þ ~PV

i�1
; _V

i
D E

þ Vi ~PV
i�1

; ~W
i

D E
þ ~rT; _~ap
� �

þ ~lT;
_~hp

D E
P

o~w

oVi
; _V

i

* +
þ o~w

o~a

 !T

� ~rT; _~a

* +
þ o~w

o~h

 !T

� ~lT;
_~h

* +

þ o~w
o~eq

_~eq þ
o~w
o~eg

_~eg þ
o~w
o~g

; _~g

* +
; ð48Þ

where the spin ~W
i
and plastic velocity gradient ~L

p
referred to configuration ~b are

found from
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_F
i
Fi�1 ¼ _V

i
Vi�1 þ Vi _R

i
RiT|fflffl{zfflffl}
~W
i

Vi�1; ~L
p ¼ Fi _F

p
Fp�1Fi�1; ð49Þ

and where the Eshelby-type stress (cf. Eshelby, 1951, 1975; Maugin, 1994; Le and

Stumpf, 1996c),

~P � ~M
T � ~w~1 ¼ JeFe�1 Rg� w1ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

p

Fe ¼ ~J
�1~F FTT̂G� w010

� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

P

~F
�1 ð50Þ

is defined as the push-forward of the mixed-variant reference configuration energy-

momentum tensor P, or equivalently as the pull-back of the current configuration
Eshelby stress tensor p. In Eq. (50), 10, ~1, and 1 denote mixed-variant identity maps

on configurations b0; ~b, and b, respectively, T̂ ¼ ST is the usual first Piola–Kirchhoff

stress, ~M
T
is the transposed Mandel stress, g is the current configuration metric ten-

sor, G is the reference configuration metric tensor, and w is the free energy measured

per unit current volume. We enforce the notion that the geometrically necessary de-

fect density tensors ~a and ~h contribute neither storage or dissipation on the right side

of (48), resulting in

~r ¼ o~w
o~a

; ~l ¼ o~w

o~h
; ð51Þ

and leading to

~P; ~L
p

D E
|fflfflfflffl{zfflfflfflffl}

Dissipation from

plastic defect fluxes

ðe:g: dislocation glideÞ

þ ~PVi�1; _V
i

D E
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dissipation from

microscopic heterogeneity

ðe:g: dislocation clusteringÞ

þ Vi~PVi�1; ~W
i

D E
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Dissipation from

microscopic heterogeneity

ðe:g: disclination spinÞ

þ ~rT; _~ap
� �

þ ~lT;
_~hp

D E
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dissipation from

geometrically necessary defect densities

P
o~w

oVi
; _V

i

* +
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Energy storage from

microscopic heterogeneity

þ o~w
o~eq

_~eq þ
o~w
o~eg

_~eg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Energy storage from

statistically stored defect densities

þ o~w
o~g

; _~g

* +
|fflfflfflfflffl{zfflfflfflfflffl}

Choice of

intermediate metric tensor

: ð52Þ

We have described the physics behind each term in (52) apart from the final term re-

lated to ~g. If we make the (usual) constitutive assumption ~gab ¼ dab, where dab is the
covariant identity map, this term vanishes. As discussed by Clayton et al. (2004b),

other choices for ~gab may be advantageous for describing situations in which internal

stresses associated with defect arrangements (e.g., at flexing subgrain walls) may

arise from or be amplified by applied loads (Gibeling and Nix, 1980; Argon and
Takeuchi, 1981; Kassner et al., 2002). Additionally, note that from (38) we have

h~rT; _~api ¼ �h~rT; _~ai and h~lT;
_~hpi ¼ �h~lT;

_~hi, meaning that the final two terms on

the left-hand side of inequality (52) may be replaced by terms denoting energy stor-

age associated with geometrically necessary defects (see later Eq. (90)), as a matter of

preference in addressing the issue of energy storage versus dissipation as a function

of scale (cf. Wei and Hutchinson, 1999).

The general philosophy adopted here is prescription of balance laws for the

energetic forces R (macroscopic Cauchy stress), ~r (microscopic force conjugate to
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geometrically necessary dislocations within the volume element), and ~l (microscopic

force conjugate to geometrically necessary disclinations within the volume element)

as well as the temperature T. Additional evolution equations are then required to

specify the time history of dissipative kinematic variables Fi and Fp and scalar inter-

nal variables ~eq and ~eg. Force conjugates
o~w
oVi,

o~w
o~eq
, and o~w

o~eg
associated in (52) with energy

storage (i.e., residual energy from cold working) are not required to satisfy any addi-

tional balance laws.

From (39) to (41), the macroscopic Cauchy stress R is supposed to obey the stan-

dard linear and angular momentum balances and reflects the average traction carried

by a local crystalline volume element in the current configuration. The microforces ~r
and ~l reflect higher order moments of the microscopic traction distribution sup-

ported by the volume element (see e.g., Kröner, 1963) and do not explicitly enter

the macroscopic momentum (41) or energy (42) balances in our theory. Instead, con-
travariant mixed-configurational versions of these forces,

r�ab � Je�1F i�1�a
:a ~gav~rvd~g

bdF eb
:b ; l�ab � Je�1F i�1�a

:a ~gav~lvd~g
bdF eb

:b ; ð53Þ
satisfy coupled microscopic momentum balances independent from (40). The higher
order microscopic balance relations are intended to apply to subvolumes within the

considered macroelement pertinent to the macroscopic momentum balance relations

in (41). At these finer scales, heterogeneous features such as grains, second phases,

subgrains, or other dislocation substructures are expected to engender gradients of
~a and ~h. This clarification of macro- and micro-effectively parallels the kinematical

argument of Section 2 in that Fi reflects heterogeneity at subscales within the consid-

ered volume element subjected to the multiplicative deformation gradient decompo-

sition F ¼ FeFiFp ¼ FLFp.
Please note that r is a first-order moment stress (i.e., couple stress) with units of

Force/Length, whereas l is a second-order moment stress (i.e., hyperstress) with units

of Force. Extending standard stress tetrahedron arguments for micropolar media

with higher-order stresses (cf. Malvern, 1969), we postulate the following global

angular momentum balances, restricted here to the microscopically quasi-static case

(i.e., no micro-inertia) and in the absence of microscopic body forces:Z
a

�tr da ¼ 0;

Z
a

�e : �x��trð Þ þ�tl
� �

da ¼ 0; ð54Þ

where �tr ¼ hr; ni and �tl ¼ hl; ni are, respectively, first- and second-order couple trac-

tion vectors with components referred to �b and acting on spatial surface a with out-

ward normal n, and �x � FL�1x are spatial coordinates pulled back to �b under the

Cauchy–Born approximation. Localized forms of (54) then follow naturally from

application of the divergence theorem in the current configuration:

r�ab
bj ¼ 0; �e�a�b�vF

L�1�b
:b r�vb þ lb

�ajb ¼ 0; ð55Þ

where l:a
�a ¼ �g�a�bl

�ba and vertical bars denote covariant differentiation with respect to

spatial coordinates x. Relations (55) are analogous to the micropolar elastic balance
laws used in the finite strain theory of Minagawa (1979) and the linearized theory of

Eringen and Claus (1970). We note that if ~w is quadratic in each of ~a and ~h, then r



236 J.D. Clayton et al. / International Journal of Plasticity 22 (2006) 210–256
and l in (55) are, respectively, linear in configurational mappings of ~a and ~h, and the

so-called ‘‘microforce balances’’ in (55) are then interpreted in terms of covariant

spatial gradients of geometrically necessary dislocations (55)1, pertaining to pile-

ups and dipole structures, and disclinations (55)2, contributing to nonsymmetric mo-

ment stress ~r.
The usual heat equation is suggested for the temperature field:

qA ¼ �kT Bj G
BA; ð56Þ

where we have assumed isotropic conduction (a typical assumption easily extended

to the anisotropic case), with thermal conductivity k, posed above in the reference
coordinate frame.

The time rate of Fp is described by Eq. (9), i.e., _F
p ¼ �L

p
Fp, which in turn requires

constitutive equations for slip rates _ci of (10). In rate dependent crystals, slip is typ-

ically dictated by a viscoplastic flow rule, in our case of the following form in con-

figuration �b :

_ci ¼ _ci �pi; �qj
S ; �g

j
S ; �a;

�h;Ui; T
� �

; ð57Þ

where the driving force for slip, �pi � �mi
�aF

i�1�a
:a

~P
a

:bF
ib
:�b
�si�b, is a resolved scalar Eshelby

stress on system i such that

~P;Fi
X
i

_ci�si � �mi

 !
Fi�1

* +
¼
X
i

�pi _ci ð58Þ

is the contribution of the plastic shearing rates to the dissipation inequality (52). The

variables �qi
S and �giS are statistically stored defect densities assigned to the ith slip sys-

tem, i.e., line lengths per unit volume in configuration �b, such that

J i~qS � �qS ¼
X
i

�qi
S ; J i~gS � �gS ¼

X
i

�giS; ð59Þ

with Ji the Jacobian determinant of Fi. In (57), statistically stored defects generally

contribute to self-hardening (i = j) and latent-hardening (i 6¼ j). Geometrically neces-

sary defect densities also contribute to hardening on each system, and as a result,
their counterparts in configuration �b, defined as

�a�a
�b � J iF i�1�a

:a ~aabF i�1�b
:b ; �h

�a�b � J iF i�1�a
:a

~h
ab
F i�1�b

:b ; ð60Þ

are included in the flow rule (57). Please note that the net defect density tensors in
(60) are not to be confused with the total defect density tensors �ajt and �h

k
t introduced

in Eq. (8). It is also noted that within our framework, the plastic velocity gradient

may alternatively be described by evolution laws for defect fluxes and generation

rates of Eqs. (7) or (10) (cf. Acharya (2001, 2003)) rather than evolution equations

for slip rates as in (57). The former approach appears more conducive to correlation

with numerical experiments based on discrete dislocation dynamics (cf. Zbib and

De La Rubia, 2002) or atomic-scale interactions (cf. Nazarov et al., 2000), while

the latter approach appears more conducive to correlation with macroscopic
experiments.
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Specific guidelines describing how dislocation densities may participate in the flow

rule (i.e., strain hardening) can be found in previous works by the co-authors

(Bammann, 2001; Regueiro et al., 2002; Clayton et al., 2004a). Disclination densities

(specifically, partial disclination dipoles) may contribute to hardening and/or geomet-

rical softening depending upon the particular material under consideration and its
deformation history, as discussed by Pe�cherski (1983, 1985) and Seefeldt and co-work-
ers (Seefeldt and Klimanek, 1997, 1998; Seefeldt, 2001). The right stretch tensor Ui of

Fi (i.e., the counterpart of left stretch Vi in configuration �b) is included in (57) to

account for contributions of heterogeneity of inelastic deformation within the local

volume not engendered by that volume�s (average) statistically stored and geometri-

cally necessary defect densities, such as higher order moments of dislocation densities

(Kröner, 1973; Hartley, 1975) contained within the element. For example, a backstress

may arise in conjunction with piled-up dislocations at a misoriented subgrain bound-
ary. The corresponding inhibiting effect on plastic flow would then manifest in (57)

through the inclusion of �h and Ui, the former reflecting the misorientation boundary

itself and the latter accounting for a spatial gradient of dislocation density in the pile-

up direction. Our treatment could be further extended to explicitly include higher or-

der gradients or moments of defect densities in the flow rule or yield conditions, albeit

at the expense of increasedmodel complexity. Also, when inelastic volume changes are

of interest (e.g., high temperature creep conditions characterized by vacancy migra-

tion), a nonvanishing non-slip term �L
p

v should be included in kinematic relation (9),
with its evolution exhibiting the same general constitutive dependency as _ci in (57).

Since statistically stored defects accumulate in response to the motion of defects

and their interactions, their evolution equations are assigned the same general con-

stitutive dependencies as the shearing rates, i.e.,

_�q
i
S ¼ _�q

i
S �pi; �qj

S ; �g
j
S ; �a;

�h;Ui; T
� �

; _�g
i
S ¼ _�g

i
S �pi; �qj

S ; �g
j
S ; �a;

�h;Ui; T
� �

: ð61Þ

Kinetic relations such as (61) are strongly material dependent. More specific equa-
tions dealing with coupled evolution of dislocation and disclination densities – which

may be considered as particular implementations of the general relations (61) – may

be found in the cited references (Pe�cherski, 1983, 1985; Seefeldt and Klimanek, 1997,

1998; Seefeldt, 2001). An analogous general prescription is given for the time rate of

Fi, referred to configuration �b:

Fi�1 _F
i � �L

i ¼ �L
i �P; �qi

S ; �g
i
S ; �a;

�h;Ui; T
� �

; ð62Þ

where �P
�a
:�b � F i�1�a

:a
~P
a

:bF
ib
:�b
is the Eshelby stress tensor on �b. As introduced in Eq. (12), Fi

accounts for lattice heterogeneity within the crystalline volume element and also dic-

tates the rate of rotation of the slip planes and directions arising from the generation
and flux of mobile disclinations traversing the element, and as a result, will account

for the diffusion of crystallographic texture observed as subgrain cells – delineated in

our present framework by walls of partial disclination dipoles – emerge and then ro-

tate relative to one another (see e.g., Butler and McDowell, 1998; Peeters et al., 2001;

Hughes et al., 2003). From Fig. 4 and the definition FL � FeFi, the rotational part Re

of Fe depicts the average rotation undergone by the lattice between unloaded state ~b
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and the current configuration b, while the rotational part Ri of Fi accounts for addi-

tional rotation of the lattice due to defect fields embedded within the material in re-

laxed configuration ~b. Notice also that Fi affects the slip system orientations through

its inclusion in the total lattice deformation FL, since the slip directions si and slip

plane normals mi are pushed forward to current configuration b from intermediate
configuration �b as

si ¼ FL�si; mi ¼ �miFL�1: ð63Þ
The specific form of the constitutive equation for �L

i
for a given material and scale of

resolution (e.g., lref in (1)) depends upon the particular arrangement of defects with-

in the crystal and how their local lattice strain fields interact and contribute to the

motion of the element�s external boundary. Discrete dislocation simulations or atom-

istic studies conducted in a manner analogous to the continuum simulations de-

scribed in Clayton and McDowell (2003) are expected to provide more insight

into developing Eq. (62) for particular materials.

The micropolar kinematic variableQ describes spatial gradients of lattice rotation

within the crystalline volume element arising from distributed disclinations. Consider
parallel transport of the lattice director da, over the small distance dx to a new ori-

entation d0a, conducted with respect to the covariant derivative (19). To isolate the

effects of Q, we restrict attention now to the case when FL � 1 and spatial gradients

of the lattice deformation FL are small. Applying the summation convention over

covariant Cartesian coordinates, we then may write

d0a ¼ da þ da;bdxb ¼ da þ Qbacdxbdc ¼ dac þ Qb ac½ �dxb
� 	

dc ¼ Uacdc; ð64Þ

where Qbac = Qb[ac] from Eq. (21), and the rotation matrix Uac satisfies UT � U�1

and det(U) � 1 for small magnitudes of Qbacdxb, i.e., small relative lattice rotations

such as those occurring across low-angle grain boundaries. We see from (64) that

Qbac acts as an effective ‘‘gradient’’ of rotation in the spatial direction xb. However,

Q is not a true spatial gradient since Qb[ac],d�Qd[ac],b 6¼ 0 ! Qb[ac] 6¼ #[ac],b, where #[ac]
is a skew matrix that can exist only when the compatibility conditions Qb[ac],d =

Qd[ac],b are met. From Eq. (26) and the second of (29), enforcement of such condi-

tions would in fact yield a null disclination density h in the context of linear approx-

imation (64). Note that the nine independent degrees-of-freedom of Q could be
determined, in principle, from knowledge of incremental changes in lattice rotation

due to disclinations, based upon measured gradients of intragranular misorientation,

sometimes referred to as ‘‘disorientation’’ (Barton and Dawson, 2001; Bergugnat,

2002; Kassner et al., 2002).

Our framework is complete upon introduction of explicit relationships between

the macroscopic rotation attributed to defects, Ri, and the microscopic defect density

measures, e.g.,

Ri ¼ Ri ~a; ~h;~eq;~eg
� �

: ð65Þ

Please notice that (65) is introduced independently of kinetic relation (62), the latter

implicitly containing an evolution equation for the spin due to the time rate of Ri,
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i.e., ~W
i
of (49), which in turn contributes to the dissipation rate in (52) but not to

energy storage in ~w of (45). Also note that no corresponding kinematic equation

analogous to (65) is given for the stretch Vi, which is included explicitly in the free

energy function of (45) to account for higher order moments of distirubutions of

lattice defects that lead to internal heterogeneity of lattice deformation within
the local volume element, such as dislocation pile-ups, for example, that are not

accounted for by variables ~a, ~h, ~eq, and ~eg. A variant of (65) follows from Lardner

(1973, 1974), if we assume that Ri is determined by the change in orientation of a

lattice director vector upon parallel transport around a closed circuit encircling

area a:

Ria
:�b � daa dab þ

Z
a

1

2
Ra
bcde

cdene da
� �

db�b ¼ da�b þ daad
e
�b

Z
a
CL�1abebegh

ghnh da

� da�b þ daad
e
�bC

L�1abebegX
g ð66Þ

where daa and db�b are shifters between coincident Cartesian spatial and intermediate

frames, and where in the final equality of (66), we have assumed a constant lattice
stretch over a, such that the net Frank vector Xg = �ahghnh da plays the role of the

axial vector corresponding to the rotation tensor Ri in (66), rigorously orthogonal

only in the limit of small rotations. Notice that definition (66) is non-unique in

the sense that Ri depends upon the choice of oriented area element nda. In our crystal

plasticity framework, it is natural to generalize the second of (66) to a discrete aver-

age taken over potentially active slip planes, as Ri contributes to the average rotation

of the lattice directors and the slip planes (e.g., Eqs. (15) and (63)). Such an approach

gives

Ria
:�b ¼ da�b þ daad

e
�bC

L�1abebeg
l2ref
k

Xk
i¼1

hghðmiÞh

 !
; ð67Þ

where k is the number of slip systems and the factor l2ref corresponds to the effective
area over which the disclinations act. In the limit that our local crystal volume ele-

ment shrinks to infinitesimal size, lref ! 0, and effects of disclinations can no longer

be resolved by the deformation gradient field. Particular Eq. (67) is deemed an

appropriate approximation of (65) under the following conditions: (i) the elastic lat-

tice stretch and net Frank vector are small, (ii) disclinations dominate the net resid-

ual lattice rotation relative to geometrically necessary dislocations, and (iii) the net

influences on lattice rotation from statistically stored defects contained within the

volume element cancel out. Furthermore, when the residual lattice stretch associated
with microstructural heterogeneity (Vi) is negligible, (12) reduces to the kinematic

description of Lardner (1973, 1974) and Pe�cherski (1983, 1985), i.e., F = FeRiFp.

On the other hand, in the most general case, the multiplicative decomposition (12)

may be extended to F ¼ ðFeÞðFi
ð1ÞF

i
ð2Þ . . .F

i
ðkÞÞðF

p

ð1ÞF
p

ð2Þ . . .F
p

ðkÞÞ where the residual lat-

tice deformation Fi and lattice-preserving plastic deformation Fp are each resolved

into components associated with k distinct classes of defects (e.g., statistically stored

dislocations, geometrically necessary dislocations, disclinations, etc.). Then from (45)

and (52), each Fi
ðkÞ would contribute to free energy storage (through a conjugate
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thermodynamic force) and dissipation (through the macroscopic stress power), while

each Fp

ðkÞ would only contribute to dissipation.
4. Model summary and elements of implementation

Summarized below are the primary relationships comprising the theory, assuming

for simplicity isochoric plastic deformation �L
p
characterized by slip-type kinematics

and disclination-dominated residual lattice rotation, Ri:

Macroscopic kinematics

ðdeformation gradientÞ F ¼ FeFiFp ¼ FLFp; ð68Þ

ðplastic velocity gradientÞ �L
p � _F

p
Fp�1 ¼

X
i

_ci�si � �mi; ð69Þ

ðslip system directorsÞ si ¼ FL�si; mi ¼ �miFL�1; ð70Þ

ðtotal lattice strainÞ CL
ab ¼ FL�1�a

:a d�a�bF
L�1�b
:b : ð71Þ

Microscopic kinematics

ðlinear connectionÞ C::a
cb ¼ FLa

:�a FL�1�a
:b;c þ Q::a

cb ; ð72Þ

ðmicro � rotationÞ Qcba ¼ Qc ba½ � ¼ Q::d
cbC

L
da; ð73Þ

ðtorsion=dislocationsÞ T ::a
cb ¼ T ::a

cb½ � ¼ C::a
cb � C::a

bc ¼ ecbda
ad ; ð74Þ

ðcurvature=disclinationsÞ Rabcd ¼ R½ab�½cd� ¼ 2r½cQd�½ba� þ T ::e
cdQe½ba�

¼ ebaeecdf h
ef : ð75Þ

Micro-macroscopic kinematics

ðdisclination lattice rotationÞ Ria
:�b ¼ da�b þ daad

e
�bC

L�1abebeg
l2ref
k

Xk

i¼1
hghðmiÞh

� �
:

ð76Þ
Macroscopic balance laws

ðmassÞ q0 ¼ qJ ; ð77Þ

ðlinear momentumÞ Rab
bj þ qf̂

a ¼ q€xa; ð78Þ

ðangular momentumÞ eabcR
bc ¼ 0; ð79Þ

ðtraction boundary conditionsÞ ta ¼ Rabnb: ð80Þ
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Microscopic balance laws

ðfirst order micro�momentumÞ r�ab
bj ¼ 0; ð81Þ

ðsecond order micro�momentumÞ �e�a�b�vF
L�1�b
:b r�vb þ lb

�ajb ¼ 0; ð82Þ

ðtraction boundary conditionsÞ �trð Þ�a ¼ r�abnb; �tl
� ��a ¼ l�abnb: ð83Þ

Thermodynamics

ðfree energyÞ ~w ¼ ~w ~C
e
;Vi; ~a; ~h;~eq;~eg; T ; ~g

� 	
; ð84Þ

ðinternal energy rateÞ _U 0 ¼ SAagab _F
b
:A � qAAj þ H 0; ð85Þ

ðheat fluxÞ qA ¼ �kT Bj G
BA; ð86Þ

ðmacrostressÞ ~S
ab � 2

o~w

o~C
e

ab

¼ JeF e�1a
:a RabF e�1b

:b ; ð87Þ

ðentropyÞ ~N ¼ � o~w
oT

; ð88Þ

ðmicrostressesÞ ~r ¼ o~w
o~a

; ~l ¼ o~w

o~h
; ð89Þ

ðdissipation inequalityÞ ~P; ~L
p

D E
þ ~PV

i�1
; _V

i
D E

þ Vi ~PV
i�1

; ~W
i

D E
P

o~w

oVi
; _V

i

* +
þ ~rT; _~a
� �

þ ~lT;
_~h

D E
þ o~w
o~eq

_~eq þ
o~w
o~eg

_~eg þ
o~w
o~g

; _~g

* +
: ð90Þ
Kinetics

ðplastic slip ratesÞ _ci ¼ _ci �pi; �qj
S ; �g

j
S ; �a;

�h;Ui; T
� �

; ð91Þ

ðmicro� heterogeneityÞ Fi�1 _F
i � �L

i ¼ �L
i �P; �qi

S ; �g
i
S ; �a;

�h;Ui; T
� �

; ð92Þ

ðstatistically stored dislocationsÞ _�q
i
S ¼ _�q

i
S �pi; �qj

S ; �g
j
S ; �a;

�h;Ui; T
� �

; ð93Þ

ðstatistically stored disclinationsÞ _�g
i
S ¼ _�g

i
S �pi; �qj

S ; �g
j
S ; �a;

�h;Ui; T
� �

: ð94Þ

Some general comments are now given regarding aspects of our constitutive the-

ory that differ from others in the literature. Our macroscopic ((78)–(80)) and micro-

scopic ((81)–(83)) force balance equations are independent, with the symmetry of the
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stress tensor (79) and usual structure for internal energy rate (85) maintained. This is

in contrast to the couple stress theory conceived by Fleck, Hutchinson, and co-work-

ers (Fleck and Hutchinson, 1993; Fleck et al., 1994; Gao et al., 1999) that permits a

nonsymmetric Cauchy stress. Gurtin (2002, 2004) developed a gradient crystal plas-

ticity theory preserving the symmetry conditions on the macroscopic stress and
simultaneously featuring microforce balances on discrete slip systems whereby geo-

metrically necessary dislocations (in terms of both first and second-order spatial gra-

dients of a lattice deformation map Fe�1) may naturally contribute to a backstress on

each system. In Gurtin�s theory, slip rates perform mechanical work on the boundary

of the body and explicitly enter the global energy balance (virtual power principle)

from which governing equations are derived. In our theory, the micro-variables do

no mechanical work (they are absent in (85)).

In the present work we have postulated the existence of microscopic force balances
from the outset, following consideration of balances of higher order moments (54).

Alternative approaches for constructing balance relations in higher order theories

often employ variational or virtual work principles (e.g., Toupin, 1964; Teodosiu,

1967; Le and Stumpf, 1996a,c; Gurtin, 2002). Our thermodynamic force relations

(89) emerge upon division of the total defect density tensors into elastic (storage)

and plastic (dissipative) parts, as in Eq. (38). Le and Stumpf (1996a,c) made an alter-

native prescription, dividing the conjugate defect forces into dissipative and energetic

parts, the former associated with evolution laws for defect fluxes and the latter with
stress-type balance laws for recoverable elastic deformations and defect densities.

Prior to implementation and subsequent solution of initial-boundary value prob-

lems, specific forms of the free energy function (84) and kinetic relations (91)–(94)

must be selected for the material under consideration. The framework presented here

establishes the need, and serves as a guide, for developing appropriate experiments,

both physical and numerical, necessary for simulation of a generalized continuum

accounting for the generation, motion, and interaction of dislocation and disclina-

tion defects. The dependence of the free energy upon periodic defect distributions
can be extracted from homogenization of atomistic solutions, for example (Chung,

2004). A non-convex potential (84) will promote the development of heterogeneous

deformation fields in a body subjected to nominally homogeneous initial and bound-

ary conditions, as discussed by example in Appendix A. Note that normalizing

length scale parameters or constants (Gao et al., 1999; Regueiro et al., 2002; Al-

Rub and Voyiadjis, 2004; Huang et al., 2004) associated with the dislocation and dis-

clination density tensors are expected to enter the free energy and kinetic relations, as

these defect densities are not dimensionless.
From the perspective of numerical solution of boundary value problems, Eqs.

(68)–(94) are formidable. Consider this framework in comparison to that of standard

crystal plasticity (e.g., Asaro, 1983). The additional kinematic unknowns present in

the former relative to the latter are Fi ( Eq. (68)) and Q (Eq. (73)), each having nine

independent components. Note that the defect density tensors can be derived directly

from FL and Q via (74) and (75). The corresponding additional equations in our

framework are kinematic relations (76) (3 equations relating the residual lattice

rotation and the disclination density, which in turn is a function of Q and its spatial
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gradients), microforce balances (81) and (82) (a total of 6 equations), and the kinetic

equations for Fi in (92) (9 equations). When geometrically necessary disclinations are

absent, Q = 0, Ri = 1, geometrically necessary dislocations are found from curl of the

(inverse) lattice deformation gradient via (72)–(74), and satisfaction of the micro-

force balances is trivially ensured upon proper choice of free energy dependency
on dislocations (e.g., a dislocation driving force r proportional to a curl of a tensor

field will be divergence-free). For example, a particularly simple, yet illustrative,

form for the free energy function (84) in the absence of disclination densities is the

following:

~w ¼ ~C
e

ab � ~gab
� 	

Cabvd ~C
e

vd � ~gvd
� 	

þ ~ll2~a abð Þ~gbv~gad~a
dvð Þ þ ~w1 V ia

:b

� 	
þ ~w2 ~eq

� �
þ ~w3ðT Þ; ð95Þ

where Cabvd are temperature-dependent elastic moduli, and where ~w1,
~w2, and

~w3 are

functions of their arguments, with ~w3 accounting for the specific heat capacity of the

material. Notice that the second term in (95) consists of a quadratic form of the sym-

metric part of the dislocation density tensor ~a, pre-multiplied by an effective elastic
shear modulus ~l and normalized by squared length parameter l. In this case, setting

the micro-traction (hyperstress) boundary condition �tl ¼ 0 for the second of (83) in

conjunction with the prescription Ri�1 _R
i ¼ 0 for spin components of rate Eq. (92)

leads to the (correct) trivial solution Q = 0 in (72) and Ri = 1 in (76), assuming for

initial conditions a defect-free reference lattice. In other words, substituting (95) into

(81) and (82) yields the identically satisfied expressions r�ab
;b ¼ ~ll2ebcdFL�1�a

:d;cb ¼ 0 and
�e�a�b�vF

L�1�b
:b r�vb ¼ Je�1~ll2�e�a�b�vF

i�1�v
:a ~aðabÞF i�1�b

:b ¼ 0, respectively, written here in Cartesian

spatial coordinates. Notice that the defect densities (i.e., higher order deformation
gradients) can enter the kinetic relations (91)–(94), effectively rendering these partial

differential equations in time and space. Further elaboration upon the role of higher-

order traction boundary conditions (83) and their kinematic counterparts is deferred

to future work wherein specific free energy and kinetic relations will be developed for

plastically deforming crystals containing evolving distributions of dislocations and

disclinations.
5. Concluding remarks

A general finite strain theory incorporating dislocation and disclination defects

has been introduced, based primarily on volume averaging considerations. Novel

features of the kinematic description include a three-term decomposition of the aver-

age deformation gradient for a crystalline volume element and an independent

micropolar rotation variable associated with incompatible spatial gradients of lattice

rotation within the element. The latter may be attributed to misoriented subgrain
cells separated by walls of partial disclination dipoles. The micropolar rotations

execute independently of the continuum rotations associated with elastic and inelas-

tic components of the deformation gradient, and are intended to capture physics

that geometrically necessary dislocations associated with first order gradients of
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incompatible elastic or plastic deformations cannot represent alone. For example,

these micro-rotations may evolve even under nominally homogeneous applied defor-

mations to single crystals, in contrast to geometrically necessary dislocation theories

requiring heterogeneity of deformation at the scale of the crystal to drive the evolution

of defects (see the discussion in Ortiz and Repetto, 1999; Ortiz et al., 2000, whose lam-
ination model also intends to represent such effects). Our theory separates the role of

incompatibility into contributions from higher order deformation gradients (incor-

porated primarily in the torsion or geometrically necessary dislocation tensor) and

subgranular lattice rotation gradients (incorporated in the curvature or geometri-

cally necessary disclination tensor), although the constitutive equations ultimately

dictating their evolution are in general strongly coupled. The kinematic framework

has strong ties to geometrically oriented defect field theories of the mid- to late-

twentieth century (Bilby et al., 1955; Noll, 1967; Lardner, 1973; Minagawa, 1979;
De Wit, 1981), and reduces to a formulation consistent with previous gradient-based

dislocation theories of the co-authors (cf. Bammann, 2001; Regueiro et al., 2002;

Clayton et al., 2004a) when micropolar rotations and disclinations are excluded.

Our theory admits the coupling of applied and residual elastic strain energy densities,

arising physically from the bowing of dislocation structures due to applied loads,

through the appropriate choice of free energy function (45). Higher order micro-

stresses satisfy balance laws independent of those associated with the macroscopic

Cauchy stress, and exhibit a form comparable to classical couple stress theory
(Eringen and Claus, 1970; Minagawa, 1979). Kinetic relations are left in a general

format applicable to generic metallic crystals. We expect the additional assertion

of maximal dissipation rate to serve as an heuristic tool for partitioning disloca-

tion and disclination kinetics. Also required is a more thorough examination of

the supplemental boundary conditions (83) associated with the lattice arrangement

(cf. Acharya et al., 2004).

The model is expected to capture grain size effects on initial yielding and strain

hardening, the former via proper choices of initial conditions for geometrically nec-
essary dislocations and disclinations and their inclusion in the initial slip resistances,

the latter via evolution of the crystal defects (cf. Evers et al., 2002) and their incor-

poration in the viscoplastic flow rule. Since relatively strong lattice rotation gradients

are expected in the vicinity of grain boundary regions (Bergugnat, 2002) and may be

correlated to measured hardness increases near such boundaries (Soifer et al., 2002),

initial conditions on the micro-rotation variable and defect densities should reflect

larger initial yield stresses in relatively fine-grained microstructures that exhibit more

grain boundary surface area per unit volume than relatively coarse-grained polycrys-
tals. This accords with the premise of a recent paper by Gerberich et al. (2003) in

which size effects observed in nano-indentation of metallic crystals and delamination

of thin films are shown to scale with characteristic surface-to-volume ratios, as well

as the increasing normalized strength with increasing surface-area-to-volume ratios

observed in the wire torsion experiments of Fleck et al. (1994). Potential applications

of our theory include stages 3 and 4 of plastic deformation at various deformation

rates, as fragmentation into cellular structures has been observed in FCC, BCC,

and HCP structures at large strains (Seefeldt, 2001), extremely fine-grained
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‘‘nanocrystalline’’ materials exhibiting high grain boundary surface area densities

(Benson et al., 2001; Aleksandrov et al., 2002; Valiev et al., 2002), and creep condi-

tions where subgrain formation frequently occurs (Kratochvı́l and Orlová, 1990;

Kassner and Pérez-Prado, 2000; Seefeldt and Aifantis, 2002).
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Appendix A. Kinematics and kinetics of grain subdivision

Here we illustrate how our framework may be applied to describe evolution of de-

fect substructure observed in ductile (predominantly pure FCC) metals deformed at

low homologous temperatures and low strain rates to relatively large total strains

(Pantleon, 1996; Hughes et al., 1997, 1998, 2003; Hughes and Hansen, 2000; Hughes,
2001). As shown in Fig. 7(a), typically this substructure consists of nearly equiaxed

‘‘cells’’ with interiors of relatively low defect density, separated by ‘‘Incidental Dis-

location Boundaries’’ (IDBs) across which lattice misorientations are generally of the

low-angle variety, for example, limited to less than 10� in aluminum and nickel cold-

rolled to 100% effective strain (Hughes et al., 2003). With increasing applied strain,

the cells tend to organize collectively into bands or ‘‘cell blocks’’, often elongated in

shape in a direction depending upon the initial texture and loading conditions. The

cell blocks are separated by dislocation walls termed ‘‘Geometrically Necessary
Boundaries’’ (GNBs), across which misorientations can reach high-angle magnitudes

(i.e., in excess of 15�). Average cell and cell block sizes decrease with increasing ap-

plied strain, with the cell block size generally decreasing at a significantly faster rate

than the cell size (Hughes et al., 1997). Both GNBs and IDBs are thought to contain

mixed populations of redundant (i.e., statistically stored) and non-redundant (i.e.,
Fig. 7. Dislocation substructure (a) and lattice directors (b) in a deformed single crystal.
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geometrically necessary) dislocations (Hughes et al., 2003). It is also noted that other

terminology exists for similar defect substructures; for example, Kuhlmann-Wilsdorf

and co-workers (Kuhlmann-Wilsdorf et al., 1999) used the term ‘‘Deformation

Bands’’ to denote slab-shaped volume elements within which a reduced number of

slip systems is active for arbitrary shape changes (i.e., fewer than five systems), with
such volume elements delineated by GNBs. However, attention is focused here on

the observations, terminology, and hypotheses of Hughes, Hansen, and co-workers

detailed in the aforementioned cited references.

In the context our framework, the kinematics of the above defect substructure can

be described as follows. Redundant dislocations and disclinations that contribute no

net observed misorientation (i.e., no incompatibility) are grouped collectively into

the statistically stored dislocation and disclination scalars �qi
S and �giS, respectively.

Geometrically necessary dislocations (i.e., the net dislocation tensor a) represent
the non-redundant defect component corresponding to fluctuations in lattice orien-

tation across the cell boundaries (i.e., IDBs). The micro-rotation variable Q (in con-

junction with associated net disclination density tensor h) depicts the non-redundant

dislocation component of the cell block boundaries (i.e., GNBs). Fractions of dislo-

cations and disclinations that are geometrically necessary may differ, as they repre-

sent different features of the microstructure: IDBs and GNBs, respectively.

The general theory developed in Sections 2 and 3 of the present paper places no

restrictions on the characteristic spacing or the strength of the physical misorienta-
tion boundary to which we attribute a particular type of defect density. For example,

we could alternatively allow dislocations to comprise GNBs and disclinations to

comprise IDBs, or allow a mixture of defect types to comprise each kind of bound-

ary. Our decision here to model GNBs with the disclination density and IDBs with

the dislocation density stems from both convenience and from physical consider-

ations in agreement with models set forth in prior literature (Panin, 1998; Seefeldt,

2001). From the perspective of calibrating the constitutive model to physical obser-

vations, it is most convenient to assign one type of defect density (i.e., dislocation or
disclination) to one type of boundary (i.e., IDB or GNB) such that material param-

eters and kinetic relations can be chosen to reflect the corresponding physics, for

example average misorientation angles and wall spacings. Following Panin (1998)

and Seefeldt (2001), we associate the rotational units that serve to accommodate

inelastic deformation and subgranular incompatibility seen at comparatively large

strains with disclinations (GNBs), with geometrically necessary dislocations captur-

ing the local misorientations across IDBs arising at a finer length scale. From this

standpoint, upon inelastic straining, IDBs (i.e., dislocations) accumulate first, and
then later organize into GNBs (i.e., disclination boundaries) at larger applied

deformations.

The micro-rotation concept is illustrated in Fig. 7(b) with regard to lattice vectors.

Let x and x 0 be spatial coordinates of material points in neighboring cell blocks, with

corresponding lattice director vectors da and d0a. Assume that in elastically unloaded

configuration �b, the director triads are parallel, i.e.,

�d�a ¼ �d
0
�a: ðA:1Þ
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Let FL and FL0 denote the local lattice deformations at x and x 0, respectively. Mul-

tiplying both sides of (A.1) by FL0�1, we arrive at the following relationship between

da and d0a:

d0a ¼ FL�1
� ��a

:a
þ

FL0�1
� ��a

:a
� FL�1
� ��a

:a

x0c � xcð Þ x0c � xcð Þ
 !

FL
� �b

:�a
db: ðA:2Þ

We also have, from (19) and the assertion of parallel transport (i.e., $bda = 0),

d0a ¼ FL�1
� ��a

:a
þ FL�1
� ��a

:a;c
dxc þ FL�1

� ��a
:d
Q::d

cadx
c

� 	
FLb

:�a db; ðA:3Þ

where dxc ” x 0c�xc and d0a � da � da;bdxb. We thus see, upon comparing (A.2) and

(A.3), that Q represents the ‘‘error’’ in the capability for the first spatial gradient

of FL�1 to capture the absolute change in the lattice directors over the small distance

dxc, i.e.,

Q::d
ca ¼ FLd

:�a

FL0�1
� ��a

:a
� FL�1
� ��a

:a

x0c � xcð Þ � FL�1
� ��a

:a;c

 !
: ðA:4Þ

Equivalently, one can think of Q as representative of the effects of higher than

first order gradients of the lattice deformation FL on the spatial variation of the lat-

tice directors. In typical higher-order gradient crystal plasticity theories from the re-
cent literature (cf. Nagdhi and Srinivasa, 1993; Le and Stumpf, 1996a; Shizawa and

Zbib, 1999; Acharya and Bassani, 2000; Bammann, 2001; Regueiro et al., 2002; Gar-

ikipati, 2003; Clayton et al., 2004a), only the first order gradient of the elastic or plas-

tic deformation (e.g., only the first gradient of Fe or Fp when the usual decomposition

F = FeFp is implemented) influences the material response, through its manifestation

in the geometrically necessary dislocation density tensor. However, by including the

micro-rotation variable Q, the potentially nonlinear variation in lattice directors

(i.e., higher than first order gradients of FL) between neighboring material points
is captured in the response in the present theory. This nonlinearity is manifested

in our GND density tensor and in our disclination density tensor through Q term

and its spatial gradient, respectively (see Eqs. (23), (25) and (29)). Physically, this

nonlinearity can be attributed to the superposition of lattice rotations across GNBs

between cell blocks with the rotations across IDBs between the cells. Under the

assumption that the misorientations across the GNBs remain small, the disclination

density tensor simplifies to the linear approximation

4hgd � egbaedceRabce � 2egbaedceo½cQe�½ba� ¼ 2egbaedceQeba;c: ðA:5Þ

We now consider kinetics briefly in the context of the experimental data reported

by Hughes et al. (1997, 1998, 2003). Evolution equations applicable in this context

should reflect the following physical phenomena:

� Characteristic scaling of misorientation distributions for IDBs and GNBs.

� Characteristic scaling of size distributions for cells and cell blocks.
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� Increase in average IDB misorientation proportional to ð�epÞ1=2, and increase in

average GNB misorientation proportional to ð�epÞ2=3, where �ep is the effective mac-

roscopic plastic strain.

� Reduction in average cell and cell block sizes proportional to ð�epÞ�1=2
and ð�epÞ�2=3

,

respectively.

Furthermore, the final microstructural configuration attained in a simulation of

material behavior should reflect observations regarding cellular misorientation and

size distributions, and can be chosen to reflect a path of minimum stored residual

elastic energy (i.e., maximum dissipation). In other words, for the same boundary

conditions, more total dissipation over the deformation history is expected for

attainment of a low-energy configuration consisting of collectively organized geo-

metrically necessary and statistically stored defects than would be expected for
attainment of a plastically homogeneously deforming crystal containing a distribu-

tion of redundant (i.e., statistically stored) defects alone. Moreover, greater total dis-

sipation is expected over the deformation history for attainment of the actual

configuration of defects than for any other candidate distribution of these defects.

We recognize that construction of specific kinetic relations capturing the above listed

features of the response within the context of our general theory is a non-trivial task,

one that will be undertaken more rigorously in forthcoming works.

Our framework admits the possibility of evolution of a heterogeneous deforma-
tion gradient field in conjunction with affine boundary conditions based upon ener-

getic arguments. Rather than specify deterministically the slip rates _ci as implied in

Section 3, we may instead re-write (57) as incremental relations

dci ¼ dci �pi; �qj
S ; �g

j
S ; �a;

�h;Ui; T ; ~WðtÞ
� �

; ðA:6Þ

where we have added dependence upon the global free energy of the entire crystal or
polycrystal (i.e., entire domain V of the specific boundary value problem), with this

energy denoted by ~W �
R
~wdV . Conceptually, one may predict the evolution of the

slip increments (A.6) by sequential minimization of ~W, subject to constraints im-

posed by the other dependent variables and physical observations (Ortiz et al.,

2000). A non-convex potential ~w may lead to lack of existence of minimum energy

configurations corresponding to a homogeneous deformation gradient field; instead,

such configurations may be reached in the limit of further refined microstructures

(e.g., heterogeneous deformation gradient fields and slip rates within the domain),
as explained thoroughly in prior literature (cf. Ball and James, 1987; Ortiz and Rep-

etto, 1999; Carstensen et al., 2002).

To illustrate how one might achieve a non-convex energy potential in the context

of our theory, we present an idealized 1D problem. Neglecting for this simple exam-

ple the contributions of geometrically necessary defects, and assuming fixed temper-

ature, consider a non-recoverable free energy ~w
S
depending quadratically upon the

statistically stored defect densities:

~w
S ¼ 1

2
l cq~eq
� �4 þ cg~eg

� �4h i
¼ 1

2
l bcq
� �4

~q2
S þ rxcg

� �4
~g2S

h i
; ðA:7Þ
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where cq and cg are dimensionless parameters. We let c denote the local inelastic

strain in the crystal, which we assume evolves monotonically, enabling its use as a

parameter in the kinetics equations in lieu of time. Assume that the evolution equa-

tions (61), mapped to configuration ~b and parameterized in terms of strain, are of the

form

o~qS

oc
¼ A� B~gS ;

o~gS
oc

¼ C; ðA:8Þ

where A, B, and C are positive material-dependent constants of the appropriate
dimensions. The first of (A.8) states that dislocations accumulate at a constant

rate minus a term representing their trapping and accumulation at disclination

boundaries. The second simply denotes a constant rate of increase in disclination

density with strain. We remark that Eqs. (A.7) and (A.8), while perhaps physi-

cally plausible, present a drastically simplified rendition of the general theory

and are introduced here for illustrative purposes only. They are not necessarily

representative of the behavior of any particular material. Assuming initial condi-

tions ~qS ¼ ~gS ¼ 0 at c = 0, the solution of differential equations (A.8) is found
trivially as

~qS ¼ Ac� BC
2

c2; ~gS ¼ Cc: ðA:9Þ

Substituting (A.9) into (A.7) then returns the stored energy as a function of

c, i.e.,

~w
S ¼ 1

2
l bcq
� �4

A2c2 � ABCc3 � BC
2

� �2

c4
 !

þ rxcg
� �4

C2c2
" #

; ðA:10Þ

with its second derivative found as

o2~w
S

oc2
¼ 1

2
l bcq
� �4

2A2 � 6ABCc� 12
BC
2

� �2

c2
 !

þ 2 rxcg
� �4

C2

" #
; ðA:11Þ

leading to the conclusion that ~w
SðcÞ is strictly convex when

A2 þ rxcg
bcq

� �4

C2 > 3ABCcþ 6
BC
2

� �2

c2: ðA:12Þ

Inequality (A.12) is satisfied when C = 0 (no disclinations) or A = B = 0 (no disloca-

tions), but is not satisfied in the general case for all c > 0 and B 6¼ 0. Thus we see

from this simple example that even though the stored energy is convex (quadratic

in this case) in each individual defect density variable, its cross-convexity is not en-

sured due to the coupling between the evolution equations, when B 6¼ 0. Should the

evolution of local inelastic strain c be dictated by energy minimization principles (cf.

Ortiz et al., 2000), the non-convexity of ~w
S
would be expected to promote a spatially

heterogeneous distribution of this strain and spatial patterning of underlying dislo-
cation and disclination densities.
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